|
from gradio.components import Component |
|
import gradio as gr |
|
import pandas as pd |
|
from abc import ABC, abstractclassmethod |
|
import inspect |
|
|
|
class BaseTCOModel(ABC): |
|
|
|
def __setattr__(self, name, value): |
|
if isinstance(value, Component): |
|
self._components.append(value) |
|
self.__dict__[name] = value |
|
|
|
def __init__(self): |
|
super(BaseTCOModel, self).__setattr__("_components", []) |
|
self.use_case = None |
|
|
|
def get_components(self) -> list[Component]: |
|
return self._components |
|
|
|
def get_components_for_cost_computing(self): |
|
return self.components_for_cost_computing |
|
|
|
def get_name(self): |
|
return self.name |
|
|
|
def register_components_for_cost_computing(self): |
|
args = inspect.getfullargspec(self.compute_cost_per_token)[0][1:] |
|
self.components_for_cost_computing = [self.__getattribute__(arg) for arg in args] |
|
|
|
@abstractclassmethod |
|
def compute_cost_per_token(self): |
|
pass |
|
|
|
@abstractclassmethod |
|
def render(self): |
|
pass |
|
|
|
def set_name(self, name): |
|
self.name = name |
|
|
|
def set_latency(self, latency): |
|
self.latency = latency |
|
|
|
def get_latency(self): |
|
return self.latency |
|
|
|
class OpenAIModelGPT4(BaseTCOModel): |
|
|
|
def __init__(self): |
|
self.set_name("(SaaS) OpenAI GPT4") |
|
self.latency = "15s" |
|
super().__init__() |
|
|
|
def render(self): |
|
def define_cost_per_token(context_length): |
|
if context_length == "8K": |
|
cost_per_1k_input_tokens = 0.03 |
|
cost_per_1k_output_tokens = 0.06 |
|
else: |
|
cost_per_1k_input_tokens = 0.06 |
|
cost_per_1k_output_tokens = 0.12 |
|
return cost_per_1k_input_tokens, cost_per_1k_output_tokens |
|
|
|
self.context_length = gr.Dropdown(["8K", "32K"], value="8K", interactive=True, |
|
label="Context size", |
|
visible=False, info="Number of tokens the model considers when processing text") |
|
self.input_tokens_cost_per_second = gr.Number(0.03, visible=False, |
|
label="($) Price/1K input prompt tokens", |
|
interactive=False |
|
) |
|
self.output_tokens_cost_per_second = gr.Number(0.06, visible=False, |
|
label="($) Price/1K output prompt tokens", |
|
interactive=False |
|
) |
|
self.info = gr.Markdown("The cost per input and output tokens values are from OpenAI's [pricing web page](https://openai.com/pricing)", interactive=False, visible=False) |
|
self.context_length.change(define_cost_per_token, inputs=self.context_length, outputs=[self.input_tokens_cost_per_second, self.output_tokens_cost_per_second]) |
|
|
|
self.labor = gr.Number(0, visible=False, |
|
label="($) Labor cost per month", |
|
info="This is an estimate of the labor cost of the AI engineer in charge of deploying the model", |
|
interactive=True |
|
) |
|
|
|
def compute_cost_per_token(self, input_tokens_cost_per_second, output_tokens_cost_per_second, labor): |
|
cost_per_input_token = (input_tokens_cost_per_second / 1000) |
|
cost_per_output_token = (output_tokens_cost_per_second / 1000) |
|
|
|
return cost_per_input_token, cost_per_output_token, labor |
|
|
|
class OpenAIModelGPT3_5(BaseTCOModel): |
|
|
|
def __init__(self): |
|
self.set_name("(SaaS) OpenAI GPT3.5 Turbo") |
|
self.latency = "5s" |
|
super().__init__() |
|
|
|
def render(self): |
|
def define_cost_per_token(context_length): |
|
if context_length == "4K": |
|
cost_per_1k_input_tokens = 0.0015 |
|
cost_per_1k_output_tokens = 0.002 |
|
else: |
|
cost_per_1k_input_tokens = 0.003 |
|
cost_per_1k_output_tokens = 0.004 |
|
return cost_per_1k_input_tokens, cost_per_1k_output_tokens |
|
|
|
self.context_length = gr.Dropdown(choices=["4K", "16K"], value="4K", interactive=True, |
|
label="Context size", |
|
visible=False, info="Number of tokens the model considers when processing text") |
|
self.input_tokens_cost_per_second = gr.Number(0.0015, visible=False, |
|
label="($) Price/1K input prompt tokens", |
|
interactive=False |
|
) |
|
self.output_tokens_cost_per_second = gr.Number(0.002, visible=False, |
|
label="($) Price/1K output prompt tokens", |
|
interactive=False |
|
) |
|
self.info = gr.Markdown("The cost per input and output tokens values are from OpenAI's [pricing web page](https://openai.com/pricing)", interactive=False, visible=False) |
|
self.context_length.change(define_cost_per_token, inputs=self.context_length, outputs=[self.input_tokens_cost_per_second, self.output_tokens_cost_per_second]) |
|
|
|
self.labor = gr.Number(0, visible=False, |
|
label="($) Labor cost per month", |
|
info="This is an estimate of the labor cost of the AI engineer in charge of deploying the model", |
|
interactive=True |
|
) |
|
|
|
def compute_cost_per_token(self, input_tokens_cost_per_second, output_tokens_cost_per_second, labor): |
|
cost_per_input_token = (input_tokens_cost_per_second / 1000) |
|
cost_per_output_token = (output_tokens_cost_per_second / 1000) |
|
|
|
return cost_per_input_token, cost_per_output_token, labor |
|
|
|
class OpenSourceLlama2Model(BaseTCOModel): |
|
|
|
def __init__(self): |
|
self.set_name("(Open source) Llama 2 70B") |
|
self.set_latency("27s") |
|
super().__init__() |
|
|
|
def render(self): |
|
|
|
self.vm = gr.Textbox(value="2x A100 80GB NVLINK", |
|
visible=False, |
|
label="Instance of VM with GPU", |
|
) |
|
self.vm_cost_per_hour = gr.Number(4.42, label="Instance cost ($) per hour", |
|
interactive=False, visible=False) |
|
self.info_vm = gr.Markdown("This price above is from [CoreWeave's pricing web page](https://www.coreweave.com/gpu-cloud-pricing)", interactive=False, visible=False) |
|
self.input_tokens_cost_per_second = gr.Number(0.00052, visible=False, |
|
label="($) Price/1K input prompt tokens", |
|
interactive=False |
|
) |
|
self.output_tokens_cost_per_second = gr.Number(0.06656, visible=False, |
|
label="($) Price/1K output prompt tokens", |
|
interactive=False |
|
) |
|
self.source = gr.Markdown("""<span style="font-size: 16px; font-weight: 600; color: #212529;">Source</span>""") |
|
self.info = gr.Markdown("The cost per input and output tokens values above are from [these benchmark results](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)", |
|
label="Source", |
|
interactive=False, |
|
visible=False) |
|
|
|
self.labor = gr.Number(10000, visible=False, |
|
label="($) Labor cost per month", |
|
info="This is an estimate of the labor cost of the AI engineer in charge of deploying the model", |
|
interactive=True |
|
) |
|
|
|
def compute_cost_per_token(self, input_tokens_cost_per_second, output_tokens_cost_per_second, labor): |
|
cost_per_input_token = (input_tokens_cost_per_second / 1000) |
|
cost_per_output_token = (output_tokens_cost_per_second / 1000) |
|
return cost_per_input_token, cost_per_output_token, labor |
|
|
|
class CohereModel(BaseTCOModel): |
|
def __init__(self): |
|
self.set_name("(SaaS) Cohere") |
|
self.set_latency("Not available") |
|
super().__init__() |
|
|
|
def render(self): |
|
def on_model_change(model): |
|
if model == "Default": |
|
cost_per_1M_tokens = 15 |
|
else: |
|
cost_per_1M_tokens = 30 |
|
cost_per_1K_tokens = cost_per_1M_tokens / 1000 |
|
return gr.update(value=cost_per_1K_tokens), gr.update(value=cost_per_1K_tokens) |
|
|
|
self.model = gr.Dropdown(["Default", "Custom"], value="Default", |
|
label="Model", |
|
interactive=True, visible=False) |
|
self.input_tokens_cost_per_second = gr.Number(0.015, visible=False, |
|
label="($) Price/1K input prompt tokens", |
|
interactive=False |
|
) |
|
self.output_tokens_cost_per_second = gr.Number(0.015, visible=False, |
|
label="($) Price/1K output prompt tokens", |
|
interactive=False |
|
) |
|
self.info = gr.Markdown("The cost per input and output tokens value is from Cohere's [pricing web page](https://cohere.com/pricing?utm_term=&utm_campaign=Cohere+Brand+%26+Industry+Terms&utm_source=adwords&utm_medium=ppc&hsa_acc=4946693046&hsa_cam=20368816223&hsa_grp=154209120409&hsa_ad=666081801359&hsa_src=g&hsa_tgt=dsa-19959388920&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad=1&gclid=CjwKCAjww7KmBhAyEiwA5-PUSlyO7pq0zxeVrhViXMd8WuILW6uY-cfP1-SVuUfs-leUAz14xHlOHxoCmfkQAvD_BwE)", interactive=False, visible=False) |
|
self.model.change(on_model_change, inputs=self.model, outputs=[self.input_tokens_cost_per_second, self.output_tokens_cost_per_second]) |
|
self.labor = gr.Number(0, visible=False, |
|
label="($) Labor cost per month", |
|
info="This is an estimate of the labor cost of the AI engineer in charge of deploying the model", |
|
interactive=True |
|
) |
|
|
|
def compute_cost_per_token(self, input_tokens_cost_per_second, output_tokens_cost_per_second, labor): |
|
|
|
cost_per_input_token = input_tokens_cost_per_second / 1000 |
|
cost_per_output_token = output_tokens_cost_per_second / 1000 |
|
|
|
return cost_per_input_token, cost_per_output_token, labor |
|
|
|
class ModelPage: |
|
def __init__(self, Models: BaseTCOModel): |
|
self.models: list[BaseTCOModel] = [] |
|
for Model in Models: |
|
model = Model() |
|
self.models.append(model) |
|
|
|
def render(self): |
|
for model in self.models: |
|
model.render() |
|
model.register_components_for_cost_computing() |
|
|
|
def get_all_components(self) -> list[Component]: |
|
output = [] |
|
for model in self.models: |
|
output += model.get_components() |
|
return output |
|
|
|
def get_all_components_for_cost_computing(self) -> list[Component]: |
|
output = [] |
|
for model in self.models: |
|
output += model.get_components_for_cost_computing() |
|
return output |
|
|
|
def make_model_visible(self, name:str, use_case: gr.Dropdown): |
|
|
|
output = [] |
|
for model in self.models: |
|
if model.get_name() == name: |
|
output+= [gr.update(visible=True)] * len(model.get_components()) |
|
|
|
model.use_case = use_case |
|
else: |
|
output+= [gr.update(visible=False)] * len(model.get_components()) |
|
return output |
|
|
|
def compute_cost_per_token(self, *args): |
|
begin=0 |
|
current_model = args[-3] |
|
current_input_tokens = args[-2] |
|
current_output_tokens = args[-1] |
|
for model in self.models: |
|
model_n_args = len(model.get_components_for_cost_computing()) |
|
if current_model == model.get_name(): |
|
|
|
model_args = args[begin:begin+model_n_args] |
|
cost_per_input_token, cost_per_output_token, labor_cost = model.compute_cost_per_token(*model_args) |
|
model_tco = cost_per_input_token * current_input_tokens + cost_per_output_token * current_output_tokens |
|
latency = model.get_latency() |
|
|
|
return model_tco, latency, labor_cost |
|
|
|
begin = begin+model_n_args |