jadehardouin commited on
Commit
4e90465
·
1 Parent(s): 9411fc2

Update models.py

Browse files
Files changed (1) hide show
  1. models.py +2 -37
models.py CHANGED
@@ -39,12 +39,6 @@ class BaseTCOModel(ABC):
39
  def set_name(self, name):
40
  self.name = name
41
 
42
- def set_formula(self, formula):
43
- self.formula = formula
44
-
45
- def get_formula(self):
46
- return self.formula
47
-
48
  def set_latency(self, latency):
49
  self.latency = latency
50
 
@@ -55,15 +49,6 @@ class OpenAIModel(BaseTCOModel):
55
 
56
  def __init__(self):
57
  self.set_name("(SaaS) OpenAI")
58
- self.set_formula(r"""For the (SaaS) OpenAI service: <br>
59
- $CR = \frac{CIT\_1K \times IT + COT\_1K \times OT}{1000}$ <br>
60
- with: <br>
61
- CR = Cost per Request <br>
62
- CIT_1K = Cost per 1000 Input Tokens <br>
63
- COT_1K = Cost per 1000 Output Tokens <br>
64
- IT = Input Tokens <br>
65
- OT = Output Tokens
66
- """)
67
  self.latency = "15s" #Default value for GPT4
68
  super().__init__()
69
 
@@ -126,15 +111,6 @@ class OpenSourceLlama2Model(BaseTCOModel):
126
 
127
  def __init__(self):
128
  self.set_name("(Open source) Llama 2 70B")
129
- self.set_formula(r"""For the (Open source) Llama 2 70B service: <br>
130
- $CR = \frac{CIT\_1K \times IT + COT\_1K \times OT}{1000}$ <br>
131
- with: <br>
132
- CR = Cost per Request <br>
133
- CIT_1K = Cost per 1000 Input Tokens <br>
134
- COT_1K = Cost per 1000 Output Tokens <br>
135
- IT = Input Tokens <br>
136
- OT = Output Tokens
137
- """)
138
  self.set_latency("27s")
139
  super().__init__()
140
 
@@ -173,18 +149,9 @@ class OpenSourceLlama2Model(BaseTCOModel):
173
  return cost_per_input_token, cost_per_output_token, labor
174
 
175
  class CohereModel(BaseTCOModel):
176
-
177
  def __init__(self):
178
  self.set_name("(SaaS) Cohere")
179
- self.set_formula(r"""For the (SaaS) Cohere service: <br>
180
- $CR = \frac{CT\_1M \times (IT + OT)}{1000000}$ <br>
181
- with: <br>
182
- CR = Cost per Request <br>
183
- CT_1M = Cost per one million Tokens <br>
184
- IT = Input Tokens <br>
185
- OT = Output Tokens
186
- """)
187
- self.set_latency("")
188
  super().__init__()
189
 
190
  def render(self):
@@ -224,7 +191,6 @@ class CohereModel(BaseTCOModel):
224
  return cost_per_input_token, cost_per_output_token, labor
225
 
226
  class ModelPage:
227
-
228
  def __init__(self, Models: BaseTCOModel):
229
  self.models: list[BaseTCOModel] = []
230
  for Model in Models:
@@ -272,9 +238,8 @@ class ModelPage:
272
  model_args = args[begin:begin+model_n_args]
273
  cost_per_input_token, cost_per_output_token, labor_cost = model.compute_cost_per_token(*model_args)
274
  model_tco = cost_per_input_token * current_input_tokens + cost_per_output_token * current_output_tokens
275
- formula = model.get_formula()
276
  latency = model.get_latency()
277
 
278
- return model_tco, formula, latency, labor_cost
279
 
280
  begin = begin+model_n_args
 
39
  def set_name(self, name):
40
  self.name = name
41
 
 
 
 
 
 
 
42
  def set_latency(self, latency):
43
  self.latency = latency
44
 
 
49
 
50
  def __init__(self):
51
  self.set_name("(SaaS) OpenAI")
 
 
 
 
 
 
 
 
 
52
  self.latency = "15s" #Default value for GPT4
53
  super().__init__()
54
 
 
111
 
112
  def __init__(self):
113
  self.set_name("(Open source) Llama 2 70B")
 
 
 
 
 
 
 
 
 
114
  self.set_latency("27s")
115
  super().__init__()
116
 
 
149
  return cost_per_input_token, cost_per_output_token, labor
150
 
151
  class CohereModel(BaseTCOModel):
 
152
  def __init__(self):
153
  self.set_name("(SaaS) Cohere")
154
+ self.set_latency("Not available")
 
 
 
 
 
 
 
 
155
  super().__init__()
156
 
157
  def render(self):
 
191
  return cost_per_input_token, cost_per_output_token, labor
192
 
193
  class ModelPage:
 
194
  def __init__(self, Models: BaseTCOModel):
195
  self.models: list[BaseTCOModel] = []
196
  for Model in Models:
 
238
  model_args = args[begin:begin+model_n_args]
239
  cost_per_input_token, cost_per_output_token, labor_cost = model.compute_cost_per_token(*model_args)
240
  model_tco = cost_per_input_token * current_input_tokens + cost_per_output_token * current_output_tokens
 
241
  latency = model.get_latency()
242
 
243
+ return model_tco, latency, labor_cost
244
 
245
  begin = begin+model_n_args