import gradio as gr import pandas as pd import matplotlib.pyplot as plt import io import base64 text = "

TCO Comparison Calculator" text1 = "

First solution" text2 = "

Second solution" text3 = "

Comparison" text4 = "

Results" diy_value = 0 saas_value = 0 def calculate_tco(model_choice, vm_rental_choice, out_diy): VM_cost_per_hour=3.6730 #at Azure for the basic pay as you go option maxed_out = 0.8 #percentage of time the VM is maxed out used = 0.5 #percentage of time the VM is used tokens_per_request = 64 if model_choice == "Llama-2-7B": tokens_per_second=694.38 elif model_choice == "Llama-2-13B": tokens_per_second=1000 elif model_choice == "Llama-2-70B": tokens_per_second=10000 if vm_rental_choice == "pay as you go": reduction = 0 elif vm_rental_choice == "1 year reserved": reduction = 0.34 elif vm_rental_choice == "3 years reserved": reduction = 0.62 homemade_cost_per_token = VM_cost_per_hour * (1 - reduction) / (tokens_per_second * 3600 * maxed_out * used) homemade_cost_per_request = tokens_per_request * homemade_cost_per_token out_diy = homemade_cost_per_token return out_diy def calculate_tco_2(model_provider, context, out_saas): tokens_per_request = 64 if model_provider == "OpenAI": if context == "4K context": saas_cost_per_token = 0.00035 saas_cost_per_request = saas_cost_per_token * tokens_per_request elif context == "16K context" : saas_cost_per_token = 0.0007 saas_cost_per_request = saas_cost_per_token * tokens_per_request out_saas = saas_cost_per_token return out_saas def extract_cost_from_text(text): try: cost = float(text) return cost except ValueError as e: raise ValueError("Invalid cost text format") def compare(cost_text1, cost_text2): try: # Extract the costs from the input strings cost1 = extract_cost_from_text(cost_text1) cost2 = extract_cost_from_text(cost_text2) r = cost1 / cost2 if r < 1: comparison_result = f"First solution is cheaper, with a ratio of {r:.2f}." elif r > 1: comparison_result = f"Second solution is cheaper, with a ratio of {r:.2f}." else: comparison_result = "Both solutions will cost the same." return comparison_result except ValueError as e: return f"Error: {str(e)}" def update_plot(diy_value, saas_value): data = pd.DataFrame( { "Solution": ["Open-source", "SaaS"], "Cost/token ($)": [diy_value, saas_value], } ) return gr.BarPlot.update(data, x="Solution", y="Cost/token ($)") def render_latex(latex_str): fig, ax = plt.subplots(figsize=(1, 1)) ax.text(0.5, 0.5, f"${latex_str}$", size=12, usetex=True, va="center", ha="center") ax.axis("off") buf = io.BytesIO() plt.savefig(buf, format="png") plt.close(fig) base64_str = base64.b64encode(buf.getvalue()).decode("utf-8") return f"" description=f"""

In this demo application, we help you compare different solutions for your AI incorporation plans, such as open-source or SaaS.

First, you'll have to choose the two solutions you'd like to compare. Then, follow the instructions to select your configurations for each solution and we will compute the cost/request accordingly to them. Eventually, you can compare both solutions to evaluate which one best suits your needs, in the short or long term.

""" description1="This interface provides you with the cost per token you get using the open-source solution, based on the model you choose to use and how long you're planning to use it. The selected prices for a Virtual Machine rental come from Azure's VM rental plans, which can offer reductions for long-term reserved usage." description2="This interface provides you with the cost per token resulting from the AI model provider you choose and the number of tokens you select for context, which the model will take into account when processing input texts." description3="This interface compares the cost per request for the two solutions you selected and gives you an insight of whether a solution is more valuable in the long term." models = ["Llama-2-7B", "Llama-2-13B", "Llama-2-70B"] vm_rental_choice = ["pay as you go", "1 year reserved", "3 years reserved"] model_provider = ["OpenAI"] context = ["4K context", "16K context"] error_box = gr.Textbox(label="Error", visible=False) with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown(value=text) gr.Markdown(value=description) out_diy = gr.State(value=0) out_saas = gr.State(value=0) out_diy2 = gr.State(value=0) out_saas2 = gr.State(value=0) with gr.Row(): with gr.Column(): solution_selection = gr.Dropdown(["SaaS", "Open-source"], label="Select a Solution", value="SaaS") with gr.Row(visible=False) as title_column: gr.Markdown(value=text1) with gr.Row(visible=False) as text_diy_column: gr.Markdown(description1) with gr.Accordion("Open to see the formula", visible=False, open=False) as formula_diy: gr.Markdown( r"$ opensource\_cost\_per\_request = \frac{tokens\_per\_request \times VM\_cost\_per\_hour \times (1 - reduction)}{tokens\_per\_second \times 3600 \times maxed\_out \times used}$" ) with gr.Row(visible=False) as input_diy_column: model_inp = gr.Dropdown(models, label="Select an AI Model", value="Llama-2-7B", info="Open-source AI model used for your application") rental_plan_inp = gr.Dropdown(vm_rental_choice, label="Select a VM Rental Plan", value="pay as you go", info="These options are from Azure's VM rental plans") rental_plan_inp.change(fn=calculate_tco, inputs=[model_inp, rental_plan_inp, out_diy], outputs=out_diy) with gr.Row(visible=False) as text_saas_column: gr.Markdown(description2) with gr.Accordion("Open to see the formula", visible=False, open=False) as formula_saas: gr.Markdown( r"$ saas\_cost\_per\_request = saas\_cost\_per\_token \times tokens\_per\_request$" ) with gr.Row(visible=False) as input_saas_column: model_provider_inp = gr.Dropdown(model_provider, label="Model Provider", vallue="OpenAI", info="Choose an AI model provider you want to work with") context_inp = gr.Dropdown(context, label="Context", value="4K context", info="Number of tokens the model considers when processing text") context_inp.change(fn=calculate_tco_2, inputs=[model_provider_inp, context_inp, out_saas], outputs=out_saas) def submit(solution_selection): if solution_selection == "Open-source": return { formula_diy: gr.update(visible=True), title_column: gr.update(visible=True), text_diy_column: gr.update(visible=True), input_diy_column: gr.update(visible=True), formula_saas: gr.update(visible=False), text_saas_column: gr.update(visible=False), input_saas_column: gr.update(visible=False), } else: return { formula_saas: gr.update(visible=True), formula_diy: gr.update(visible=False), text_diy_column: gr.update(visible=False), input_diy_column: gr.update(visible=False), title_column: gr.update(visible=True), text_saas_column: gr.update(visible=True), input_saas_column: gr.update(visible=True), } solution_selection.change( submit, solution_selection, [out_saas, text_diy_column, formula_diy, formula_saas, title_column, text_saas_column, model_inp, rental_plan_inp, model_provider_inp, context_inp, input_diy_column, input_saas_column], ) # gr.Divider(style="vertical", thickness=2, color="blue") with gr.Column(): solution_selection2 = gr.Dropdown(["SaaS", "Open-source"], value="Open-source", label="Select a Solution") with gr.Row(visible=False) as title_column2: gr.Markdown(value=text2) with gr.Row(visible=False) as text_diy_column2: gr.Markdown(description1) with gr.Accordion("Open to see the formula", visible=False, open=False) as formula_diy2: gr.Markdown( r"$ homemade\_cost\_per\_request = \frac{tokens\_per\_request \times VM\_cost\_per\_hour \times (1 - reduction)}{tokens\_per\_second \times 3600 \times maxed\_out \times used}$" ) with gr.Row(visible=False) as input_diy_column2: model_inp2 = gr.Dropdown(models, label="Select an AI Model", value="Llama-2-7B", info="Open-source AI model used for your application") rental_plan_inp2 = gr.Dropdown(vm_rental_choice, label="Select a VM Rental Plan", value="pay as you go", info="These options are from Azure's VM rental plans") rental_plan_inp2.change(fn=calculate_tco, inputs=[model_inp2, rental_plan_inp2, out_diy2], outputs=out_diy2) with gr.Row(visible=False) as text_saas_column2: gr.Markdown(description2) with gr.Accordion("Open to see the formula", visible=False, open=False) as formula_saas2: gr.Markdown( r"$ saas\_cost\_per\_request = saas\_cost\_per\_token \times tokens\_per\_request$" ) with gr.Row(visible=False) as input_saas_column2: model_provider_inp2 = gr.Dropdown(['OpenAI'], label="Model Provider", value="OpenAI", info="Choose an AI model provider you want to work with") context_inp2 = gr.Dropdown(['4K context', '16K context'], label="Context", value="4K context", info="Number of tokens the model considers when processing text") context_inp2.change(fn=calculate_tco_2, inputs=[model_provider_inp2, context_inp2, out_saas2], outputs=out_saas2) def submit2(solution_selection2): if solution_selection2 == "Open-source": return { formula_diy2: gr.update(visible=True), title_column2: gr.update(visible=True), text_diy_column2: gr.update(visible=True), input_diy_column2: gr.update(visible=True), formula_saas2: gr.update(visible=False), text_saas_column2: gr.update(visible=False), input_saas_column2: gr.update(visible=False), } else: return { formula_diy2: gr.update(visible=False), text_diy_column2: gr.update(visible=False), input_diy_column2: gr.update(visible=False), title_column2: gr.update(visible=True), formula_saas2: gr.update(visible=True), text_saas_column2: gr.update(visible=True), input_saas_column2: gr.update(visible=True), } solution_selection2.change( submit2, solution_selection2, [out_diy2, out_saas2, formula_diy2, formula_saas2, title_column2, text_diy_column2, text_saas_column2, model_inp2, rental_plan_inp2, model_provider_inp2, context_inp2, input_diy_column2, input_saas_column2], ) with gr.Row(): with gr.Column(): with gr.Row(): gr.Markdown(text3) with gr.Row(): plot = gr.BarPlot(vertical=False, title="Comparison", y_title="Cost/token ($)", width=500, interactive=True) context_inp.change(fn=update_plot, inputs=[out_diy2, out_saas], outputs=plot) model_provider_inp.change(fn=update_plot, inputs=[out_diy2, out_saas], outputs=plot) rental_plan_inp2.change(fn=update_plot, inputs=[out_diy2, out_saas], outputs=plot) model_inp2.change(fn=update_plot, inputs=[out_diy2, out_saas], outputs=plot) context_inp2.change(fn=update_plot, inputs=[out_diy, out_saas2], outputs=plot) model_provider_inp2.change(fn=update_plot, inputs=[out_diy, out_saas2], outputs=plot) rental_plan_inp.change(fn=update_plot, inputs=[out_diy, out_saas2], outputs=plot) model_inp.change(fn=update_plot, inputs=[out_diy, out_saas2], outputs=plot) demo.launch()