mitro99 commited on
Commit
a74e1f6
·
verified ·
1 Parent(s): 25fed09

Changed model to facebook mms

Browse files
Files changed (1) hide show
  1. app.py +17 -10
app.py CHANGED
@@ -3,7 +3,7 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -12,29 +12,36 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
 
 
 
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "ro"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
 
 
 
32
  return speech.cpu()
33
 
34
 
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
37
- prin(translated_text)
38
  synthesised_speech = synthesise(translated_text)
39
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
40
  return 16000, synthesised_speech
@@ -42,8 +49,8 @@ def speech_to_speech_translation(audio):
42
 
43
  title = "Cascaded STST"
44
  description = """
45
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
46
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
47
 
48
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
49
  """
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, VitsModel, VitsTokenizer
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ # processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
+ # model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
+ # vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
+
20
+ model = VitsModel.from_pretrained('facebook/mms-tts-ron')
21
+ tokenizer = VitsTokenizer.from_pretrained('facebook/mms-tts-ron')
22
 
23
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
24
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
25
 
26
 
27
  def translate(audio):
28
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "ro"})
29
  return outputs["text"]
30
 
31
 
32
  def synthesise(text):
33
+ inputs = tokenizer(text=text, return_tensors="pt")
34
+ # speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
35
+ with torch.no_grad():
36
+ outputs = model(inputs['input_ids'])
37
+
38
+ speech = outputs['waveform']
39
  return speech.cpu()
40
 
41
 
42
  def speech_to_speech_translation(audio):
43
  translated_text = translate(audio)
44
+ print(translated_text)
45
  synthesised_speech = synthesise(translated_text)
46
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
47
  return 16000, synthesised_speech
 
49
 
50
  title = "Cascaded STST"
51
  description = """
52
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Romanian. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Facebook's
53
+ [MMS-TTS-RON](https://huggingface.co/facebook/mms-tts-ron) model for text-to-speech:
54
 
55
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
56
  """