Spaces:
Running
Running
''' | |
Converts a transformers model to safetensors format and shards it. | |
This makes it faster to load (because of safetensors) and lowers its RAM usage | |
while loading (because of sharding). | |
Based on the original script by 81300: | |
https://gist.github.com/81300/fe5b08bff1cba45296a829b9d6b0f303 | |
''' | |
import argparse | |
from pathlib import Path | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=54)) | |
parser.add_argument('MODEL', type=str, default=None, nargs='?', help="Path to the input model.") | |
parser.add_argument('--output', type=str, default=None, help='Path to the output folder (default: models/{model_name}_safetensors).') | |
parser.add_argument("--max-shard-size", type=str, default="2GB", help="Maximum size of a shard in GB or MB (default: %(default)s).") | |
parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.') | |
args = parser.parse_args() | |
if __name__ == '__main__': | |
path = Path(args.MODEL) | |
model_name = path.name | |
print(f"Loading {model_name}...") | |
model = AutoModelForCausalLM.from_pretrained(path, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if args.bf16 else torch.float16) | |
tokenizer = AutoTokenizer.from_pretrained(path) | |
out_folder = args.output or Path(f"models/{model_name}_safetensors") | |
print(f"Saving the converted model to {out_folder} with a maximum shard size of {args.max_shard_size}...") | |
model.save_pretrained(out_folder, max_shard_size=args.max_shard_size, safe_serialization=True) | |
tokenizer.save_pretrained(out_folder) | |