Spaces:
Runtime error
Runtime error
""" | |
MambaOut models for image classification. | |
Some implementations are modified from: | |
timm (https://github.com/rwightman/pytorch-image-models), | |
MetaFormer (https://github.com/sail-sg/metaformer), | |
InceptionNeXt (https://github.com/sail-sg/inceptionnext) | |
""" | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from timm.models.layers import trunc_normal_, DropPath | |
from timm.models.registry import register_model | |
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': 1.0, 'interpolation': 'bicubic', | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
'mambaout_femto': _cfg( | |
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_femto.pth'), | |
'mambaout_tiny': _cfg( | |
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_tiny.pth'), | |
'mambaout_small': _cfg( | |
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_small.pth'), | |
'mambaout_base': _cfg( | |
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_base.pth'), | |
} | |
class StemLayer(nn.Module): | |
r""" Code modified from InternImage: | |
https://github.com/OpenGVLab/InternImage | |
""" | |
def __init__(self, | |
in_channels=3, | |
out_channels=96, | |
act_layer=nn.GELU, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6)): | |
super().__init__() | |
self.conv1 = nn.Conv2d(in_channels, | |
out_channels // 2, | |
kernel_size=3, | |
stride=2, | |
padding=1) | |
self.norm1 = norm_layer(out_channels // 2) | |
self.act = act_layer() | |
self.conv2 = nn.Conv2d(out_channels // 2, | |
out_channels, | |
kernel_size=3, | |
stride=2, | |
padding=1) | |
self.norm2 = norm_layer(out_channels) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = x.permute(0, 2, 3, 1) | |
x = self.norm1(x) | |
x = x.permute(0, 3, 1, 2) | |
x = self.act(x) | |
x = self.conv2(x) | |
x = x.permute(0, 2, 3, 1) | |
x = self.norm2(x) | |
return x | |
class DownsampleLayer(nn.Module): | |
r""" Code modified from InternImage: | |
https://github.com/OpenGVLab/InternImage | |
""" | |
def __init__(self, in_channels=96, out_channels=198, norm_layer=partial(nn.LayerNorm, eps=1e-6)): | |
super().__init__() | |
self.conv = nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=2, | |
padding=1) | |
self.norm = norm_layer(out_channels) | |
def forward(self, x): | |
x = self.conv(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) | |
x = self.norm(x) | |
return x | |
class MlpHead(nn.Module): | |
""" MLP classification head | |
""" | |
def __init__(self, dim, num_classes=1000, act_layer=nn.GELU, mlp_ratio=4, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), head_dropout=0., bias=True): | |
super().__init__() | |
hidden_features = int(mlp_ratio * dim) | |
self.fc1 = nn.Linear(dim, hidden_features, bias=bias) | |
self.act = act_layer() | |
self.norm = norm_layer(hidden_features) | |
self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias) | |
self.head_dropout = nn.Dropout(head_dropout) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.norm(x) | |
x = self.head_dropout(x) | |
x = self.fc2(x) | |
return x | |
class GatedCNNBlock(nn.Module): | |
r""" Our implementation of Gated CNN Block: https://arxiv.org/pdf/1612.08083 | |
Args: | |
conv_ratio: control the number of channels to conduct depthwise convolution. | |
Conduct convolution on partial channels can improve paraitcal efficiency. | |
The idea of partical channels is from ShuffleNet V2 (https://arxiv.org/abs/1807.11164) and | |
also used by InceptionNeXt (https://arxiv.org/abs/2303.16900) and FasterNet (https://arxiv.org/abs/2303.03667) | |
""" | |
def __init__(self, dim, expension_ratio=8/3, kernel_size=7, conv_ratio=1.0, | |
norm_layer=partial(nn.LayerNorm,eps=1e-6), | |
act_layer=nn.GELU, | |
drop_path=0., | |
**kwargs): | |
super().__init__() | |
self.norm = norm_layer(dim) | |
hidden = int(expension_ratio * dim) | |
self.fc1 = nn.Linear(dim, hidden * 2) | |
self.act = act_layer() | |
conv_channels = int(conv_ratio * dim) | |
self.split_indices = (hidden, hidden - conv_channels, conv_channels) | |
self.conv = nn.Conv2d(conv_channels, conv_channels, kernel_size=kernel_size, padding=kernel_size//2, groups=conv_channels) | |
self.fc2 = nn.Linear(hidden, dim) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def forward(self, x): | |
shortcut = x # [B, H, W, C] | |
x = self.norm(x) | |
g, i, c = torch.split(self.fc1(x), self.split_indices, dim=-1) | |
c = c.permute(0, 3, 1, 2) # [B, H, W, C] -> [B, C, H, W] | |
c = self.conv(c) | |
c = c.permute(0, 2, 3, 1) # [B, C, H, W] -> [B, H, W, C] | |
x = self.fc2(self.act(g) * torch.cat((i, c), dim=-1)) | |
x = self.drop_path(x) | |
return x + shortcut | |
r""" | |
downsampling (stem) for the first stage is two layer of conv with k3, s2 and p1 | |
downsamplings for the last 3 stages is a layer of conv with k3, s2 and p1 | |
DOWNSAMPLE_LAYERS_FOUR_STAGES format: [Downsampling, Downsampling, Downsampling, Downsampling] | |
use `partial` to specify some arguments | |
""" | |
DOWNSAMPLE_LAYERS_FOUR_STAGES = [StemLayer] + [DownsampleLayer]*3 | |
class MambaOut(nn.Module): | |
r""" MetaFormer | |
A PyTorch impl of : `MetaFormer Baselines for Vision` - | |
https://arxiv.org/abs/2210.13452 | |
Args: | |
in_chans (int): Number of input image channels. Default: 3. | |
num_classes (int): Number of classes for classification head. Default: 1000. | |
depths (list or tuple): Number of blocks at each stage. Default: [3, 3, 9, 3]. | |
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 576]. | |
downsample_layers: (list or tuple): Downsampling layers before each stage. | |
drop_path_rate (float): Stochastic depth rate. Default: 0. | |
output_norm: norm before classifier head. Default: partial(nn.LayerNorm, eps=1e-6). | |
head_fn: classification head. Default: nn.Linear. | |
head_dropout (float): dropout for MLP classifier. Default: 0. | |
""" | |
def __init__(self, in_chans=3, num_classes=1000, | |
depths=[3, 3, 9, 3], | |
dims=[96, 192, 384, 576], | |
downsample_layers=DOWNSAMPLE_LAYERS_FOUR_STAGES, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
act_layer=nn.GELU, | |
conv_ratio=1.0, | |
kernel_size=7, | |
drop_path_rate=0., | |
output_norm=partial(nn.LayerNorm, eps=1e-6), | |
head_fn=MlpHead, | |
head_dropout=0.0, | |
**kwargs, | |
): | |
super().__init__() | |
self.num_classes = num_classes | |
if not isinstance(depths, (list, tuple)): | |
depths = [depths] # it means the model has only one stage | |
if not isinstance(dims, (list, tuple)): | |
dims = [dims] | |
num_stage = len(depths) | |
self.num_stage = num_stage | |
if not isinstance(downsample_layers, (list, tuple)): | |
downsample_layers = [downsample_layers] * num_stage | |
down_dims = [in_chans] + dims | |
self.downsample_layers = nn.ModuleList( | |
[downsample_layers[i](down_dims[i], down_dims[i+1]) for i in range(num_stage)] | |
) | |
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] | |
self.stages = nn.ModuleList() | |
cur = 0 | |
for i in range(num_stage): | |
stage = nn.Sequential( | |
*[GatedCNNBlock(dim=dims[i], | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
kernel_size=kernel_size, | |
conv_ratio=conv_ratio, | |
drop_path=dp_rates[cur + j], | |
) for j in range(depths[i])] | |
) | |
self.stages.append(stage) | |
cur += depths[i] | |
self.norm = output_norm(dims[-1]) | |
if head_dropout > 0.0: | |
self.head = head_fn(dims[-1], num_classes, head_dropout=head_dropout) | |
else: | |
self.head = head_fn(dims[-1], num_classes) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Conv2d, nn.Linear)): | |
trunc_normal_(m.weight, std=.02) | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
def no_weight_decay(self): | |
return {'norm'} | |
def forward_features(self, x): | |
for i in range(self.num_stage): | |
x = self.downsample_layers[i](x) | |
x = self.stages[i](x) | |
return self.norm(x.mean([1, 2])) # (B, H, W, C) -> (B, C) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.head(x) | |
return x | |
############################################################################### | |
# a series of MambaOut models | |
def mambaout_femto(pretrained=False, **kwargs): | |
model = MambaOut( | |
depths=[3, 3, 9, 3], | |
dims=[48, 96, 192, 288], | |
**kwargs) | |
model.default_cfg = default_cfgs['mambaout_femto'] | |
if pretrained: | |
state_dict = torch.hub.load_state_dict_from_url( | |
url= model.default_cfg['url'], map_location="cpu", check_hash=True) | |
model.load_state_dict(state_dict) | |
return model | |
def mambaout_tiny(pretrained=False, **kwargs): | |
model = MambaOut( | |
depths=[3, 3, 9, 3], | |
dims=[96, 192, 384, 576], | |
**kwargs) | |
model.default_cfg = default_cfgs['mambaout_tiny'] | |
if pretrained: | |
state_dict = torch.hub.load_state_dict_from_url( | |
url= model.default_cfg['url'], map_location="cpu", check_hash=True) | |
model.load_state_dict(state_dict) | |
return model | |
def mambaout_small(pretrained=False, **kwargs): | |
model = MambaOut( | |
depths=[3, 4, 27, 3], | |
dims=[96, 192, 384, 576], | |
**kwargs) | |
model.default_cfg = default_cfgs['mambaout_small'] | |
if pretrained: | |
state_dict = torch.hub.load_state_dict_from_url( | |
url= model.default_cfg['url'], map_location="cpu", check_hash=True) | |
model.load_state_dict(state_dict) | |
return model | |
def mambaout_base(pretrained=False, **kwargs): | |
model = MambaOut( | |
depths=[3, 4, 27, 3], | |
dims=[128, 256, 512, 768], | |
**kwargs) | |
model.default_cfg = default_cfgs['mambaout_base'] | |
if pretrained: | |
state_dict = torch.hub.load_state_dict_from_url( | |
url= model.default_cfg['url'], map_location="cpu", check_hash=True) | |
model.load_state_dict(state_dict) | |
return model |