Spaces:
Runtime error
Runtime error
mizoru
commited on
Commit
·
508fc3a
1
Parent(s):
6a69d6a
Copy from previous app2
Browse files- app.py +59 -0
- audio_loader.pt +3 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import gradio as gr
|
3 |
+
print(gr.__version__)
|
4 |
+
import torch
|
5 |
+
import torchaudio
|
6 |
+
|
7 |
+
|
8 |
+
df= pd.read_csv('native_words_subset.csv')
|
9 |
+
|
10 |
+
torch._C._jit_override_can_fuse_on_cpu(False)
|
11 |
+
torch._C._jit_override_can_fuse_on_gpu(False)
|
12 |
+
torch._C._jit_set_texpr_fuser_enabled(False)
|
13 |
+
torch._C._jit_set_nvfuser_enabled(False)
|
14 |
+
|
15 |
+
loader = torch.jit.load("audio_loader.pt")
|
16 |
+
model = torch.jit.load('QuartzNet_thunderspeech_3.pt').eval()
|
17 |
+
|
18 |
+
vocab = model.text_transform.vocab.itos
|
19 |
+
vocab[-1] = ''
|
20 |
+
|
21 |
+
def convert_probs(probs):
|
22 |
+
ids = probs.argmax(1)[0]
|
23 |
+
s = []
|
24 |
+
if vocab[ids[0]]: s.append(vocab[ids[0]])
|
25 |
+
for i in range(1,len(ids)):
|
26 |
+
if ids[i-1] != ids[i]:
|
27 |
+
new = vocab[ids[i]]
|
28 |
+
if new: s.append(new)
|
29 |
+
#return '.'.join(s)
|
30 |
+
return s
|
31 |
+
|
32 |
+
|
33 |
+
def predict(path):
|
34 |
+
audio = loader(path)
|
35 |
+
probs = model(audio, torch.tensor(audio.shape[0] * [audio.shape[-1]], device=audio.device))[0]
|
36 |
+
return convert_probs(probs)
|
37 |
+
|
38 |
+
|
39 |
+
from difflib import SequenceMatcher
|
40 |
+
|
41 |
+
def similar(a, b):
|
42 |
+
return SequenceMatcher(None, a, b).ratio()
|
43 |
+
|
44 |
+
def compare(chosen_word, path):
|
45 |
+
etalons = [list(val.split('.')) for val in df.loc[df['replica'] == chosen_word, 'transcription'].values]
|
46 |
+
user = predict(path)
|
47 |
+
coeff = 0.0
|
48 |
+
idx=0
|
49 |
+
for i in range(len(etalons)):
|
50 |
+
new_coeff = similar(user, etalons[i])
|
51 |
+
if new_coeff > coeff:
|
52 |
+
coeff = new_coeff
|
53 |
+
idx=i
|
54 |
+
return f'The similarity coefficient of your pronunciation and the pronunciation of a native speaker is {coeff}. The closer the coefficient is to 1, the better.' + '\nYour pronunciation: [' + ''.join(user) + ']\nClosest native pronunciation: [' + ''.join(etalons[idx]) + ']'
|
55 |
+
|
56 |
+
|
57 |
+
word_choice = gr.inputs.Dropdown(sorted(list(df['replica'].unique())), label="Choose a word")
|
58 |
+
|
59 |
+
gr.Interface(fn=compare, inputs=[word_choice, gr.inputs.Audio(source='microphone', type='filepath', optional=True)], outputs= 'text').launch(debug=True)
|
audio_loader.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7478d9de0a639a8a769684847bf697c8899e74825d9822e4d90895b916b2b51
|
3 |
+
size 23265
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
torchaudio
|