wav2tsv / app.py
mizoru's picture
fully fledged
50a5992
raw
history blame
2.9 kB
import gradio as gr
import numpy as np
from vad_utils import get_speech_probs, make_visualization, probs2speech_timestamps, read_audio
import torch
import pandas as pd
import gdown
probs = None
audio_length_samples = None
def process_audio(audio_input):
global probs
global audio_length_samples
wav = read_audio(audio_input, sampling_rate=16_000)
audio_length_samples = len(wav)
probs = get_speech_probs(wav, sampling_rate=16_000)
return make_visualization(probs, 512 / 16_000)
def process_parameters(threshold, min_speech_duration_ms, min_silence_duration_ms, window_size_samples, speech_pad_ms):
timestamps = probs2speech_timestamps(probs, audio_length_samples,
threshold = threshold,
min_speech_duration_ms = min_speech_duration_ms,
min_silence_duration_ms=min_silence_duration_ms,
window_size_samples=window_size_samples,
speech_pad_ms=speech_pad_ms)
df = pd.DataFrame(timestamps)
df["note"] = ""
df.to_csv("timestamps.txt", sep = '\t', header=False, index=False)
return "timestamps.txt", df
def download_gdrive(id):
output_file = "audio.wav" # Replace "data_file.ext" with the desired output filename and extension
gdown.download(f"https://drive.google.com/uc?id={id}", output_file)
return "output_file.wav"
def main():
with gr.Blocks() as demo:
with gr.Row():
gdrive_str = gr.Text("File ID")
download_button = gr.Button("Download Audio")
with gr.Row():
audio_input = gr.Audio(type="filepath")
button1 = gr.Button("Compute Speech Probabilities")
figure = gr.Plot()
download_button.click(download_gdrive, inputs=[gdrive_str], outputs=audio_input)
button1.click(process_audio, inputs=[audio_input], outputs=figure)
with gr.Row():
threshold = gr.Number(label="Threshold", value=0.5, minimum=0.0, maximum=1.0)
min_speech_duration_ms = gr.Number(label="Min Speech Duration (ms)", value=250)
min_silence_duration_ms = gr.Number(label="Min Silence Duration (ms)", value=100)
window_size_samples = gr.Dropdown(label="Window Size Samples", choices=[512, 1024, 1536], value=1536)
speech_pad_ms = gr.Number(label="Speech Pad (ms)", value=30)
button2 = gr.Button("Compute Speech Timestamps")
output_file = gr.File()
with gr.Row():
output_df = gr.DataFrame()
button2.click(process_parameters, inputs=[threshold, min_speech_duration_ms, min_silence_duration_ms, window_size_samples, speech_pad_ms],
outputs=[output_file, output_df])
demo.launch()
if __name__ == "__main__":
main()