Mixtral coded
Browse files- app.py +40 -0
- vad_utils.py +166 -0
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from vad_utils import get_speech_probs, make_visualization, probs2speech_timestamps
|
4 |
+
|
5 |
+
|
6 |
+
def process_audio(audio_input, model):
|
7 |
+
wav = np.array(audio_input)
|
8 |
+
probs = get_speech_probs(wav, model, sampling_rate=16_000)
|
9 |
+
return make_visualization(probs, 512 / 16_000)
|
10 |
+
|
11 |
+
def process_parameters(probs, threshold, min_speech_duration_ms, min_silence_duration_ms, window_size_samples, speech_pad_ms):
|
12 |
+
return probs2speech_timestamps(probs, threshold, min_speech_duration_ms, min_silence_duration_ms, window_size_samples, speech_pad_ms)
|
13 |
+
|
14 |
+
def main():
|
15 |
+
model = None #load_your_model() # replace with your model loading code
|
16 |
+
|
17 |
+
with gr.Blocks() as demo:
|
18 |
+
with gr.Row():
|
19 |
+
audio_input = gr.inputs.Audio(type="filepath")
|
20 |
+
button1 = gr.Button("Process Audio")
|
21 |
+
figure = gr.outputs.Image()
|
22 |
+
|
23 |
+
button1.click(process_audio, inputs=[audio_input, model], outputs=figure)
|
24 |
+
|
25 |
+
with gr.Row():
|
26 |
+
probs = gr.State(None)
|
27 |
+
threshold = gr.inputs.Number(label="Threshold", default=0.5, minimum=0.0, maximum=1.0)
|
28 |
+
min_speech_duration_ms = gr.inputs.Number(label="Min Speech Duration (ms)", default=250)
|
29 |
+
min_silence_duration_ms = gr.inputs.Number(label="Min Silence Duration (ms)", default=100)
|
30 |
+
window_size_samples = gr.inputs.Dropdown(label="Window Size Samples", choices=[512, 1024, 1536], default=1536)
|
31 |
+
speech_pad_ms = gr.inputs.Number(label="Speech Pad (ms)", default=30)
|
32 |
+
button2 = gr.Button("Process Parameters")
|
33 |
+
output_text = gr.outputs.Textbox()
|
34 |
+
|
35 |
+
button2.click(process_parameters, inputs=[probs, threshold, min_speech_duration_ms, min_silence_duration_ms, window_size_samples, speech_pad_ms], outputs=output_text)
|
36 |
+
|
37 |
+
demo.launch()
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
main()
|
vad_utils.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @title Define funcs
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
from typing import Callable, List
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import warnings
|
7 |
+
|
8 |
+
def get_speech_probs(audio: torch.Tensor,
|
9 |
+
model,
|
10 |
+
threshold: float = 0.5,
|
11 |
+
sampling_rate: int = 16000,
|
12 |
+
window_size_samples: int = 512,
|
13 |
+
progress_tracking_callback: Callable[[float], None] = None):
|
14 |
+
if not torch.is_tensor(audio):
|
15 |
+
try:
|
16 |
+
audio = torch.Tensor(audio)
|
17 |
+
except:
|
18 |
+
raise TypeError("Audio cannot be casted to tensor. Cast it manually")
|
19 |
+
|
20 |
+
if len(audio.shape) > 1:
|
21 |
+
for i in range(len(audio.shape)): # trying to squeeze empty dimensions
|
22 |
+
audio = audio.squeeze(0)
|
23 |
+
if len(audio.shape) > 1:
|
24 |
+
raise ValueError("More than one dimension in audio. Are you trying to process audio with 2 channels?")
|
25 |
+
|
26 |
+
if sampling_rate > 16000 and (sampling_rate % 16000 == 0):
|
27 |
+
step = sampling_rate // 16000
|
28 |
+
sampling_rate = 16000
|
29 |
+
audio = audio[::step]
|
30 |
+
warnings.warn('Sampling rate is a multiply of 16000, casting to 16000 manually!')
|
31 |
+
else:
|
32 |
+
step = 1
|
33 |
+
|
34 |
+
if sampling_rate == 8000 and window_size_samples > 768:
|
35 |
+
warnings.warn('window_size_samples is too big for 8000 sampling_rate! Better set window_size_samples to 256, 512 or 768 for 8000 sample rate!')
|
36 |
+
if window_size_samples not in [256, 512, 768, 1024, 1536]:
|
37 |
+
warnings.warn('Unusual window_size_samples! Supported window_size_samples:\n - [512, 1024, 1536] for 16000 sampling_rate\n - [256, 512, 768] for 8000 sampling_rate')
|
38 |
+
|
39 |
+
model.reset_states()
|
40 |
+
|
41 |
+
audio_length_samples = len(audio)
|
42 |
+
|
43 |
+
speech_probs = []
|
44 |
+
for current_start_sample in range(0, audio_length_samples, window_size_samples):
|
45 |
+
chunk = audio[current_start_sample: current_start_sample + window_size_samples]
|
46 |
+
if len(chunk) < window_size_samples:
|
47 |
+
chunk = torch.nn.functional.pad(chunk, (0, int(window_size_samples - len(chunk))))
|
48 |
+
speech_prob = model(chunk, sampling_rate).item()
|
49 |
+
speech_probs.append(speech_prob)
|
50 |
+
# caculate progress and seng it to callback function
|
51 |
+
progress = current_start_sample + window_size_samples
|
52 |
+
if progress > audio_length_samples:
|
53 |
+
progress = audio_length_samples
|
54 |
+
progress_percent = (progress / audio_length_samples) * 100
|
55 |
+
if progress_tracking_callback:
|
56 |
+
progress_tracking_callback(progress_percent)
|
57 |
+
return speech_probs
|
58 |
+
|
59 |
+
def probs2speech_timestamps(speech_probs, audio_length_samples,
|
60 |
+
threshold: float = 0.5,
|
61 |
+
sampling_rate: int = 16000,
|
62 |
+
min_speech_duration_ms: int = 250,
|
63 |
+
max_speech_duration_s: float = float('inf'),
|
64 |
+
min_silence_duration_ms: int = 100,
|
65 |
+
window_size_samples: int = 512,
|
66 |
+
speech_pad_ms: int = 30,
|
67 |
+
return_seconds: bool = False,
|
68 |
+
rounding: int = 1,):
|
69 |
+
|
70 |
+
step = sampling_rate // 16000
|
71 |
+
|
72 |
+
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
|
73 |
+
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
74 |
+
max_speech_samples = sampling_rate * max_speech_duration_s - window_size_samples - 2 * speech_pad_samples
|
75 |
+
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
76 |
+
min_silence_samples_at_max_speech = sampling_rate * 98 / 1000
|
77 |
+
|
78 |
+
triggered = False
|
79 |
+
speeches = []
|
80 |
+
current_speech = {}
|
81 |
+
neg_threshold = threshold - 0.15
|
82 |
+
temp_end = 0 # to save potential segment end (and tolerate some silence)
|
83 |
+
prev_end = next_start = 0 # to save potential segment limits in case of maximum segment size reached
|
84 |
+
|
85 |
+
for i, speech_prob in enumerate(speech_probs):
|
86 |
+
if (speech_prob >= threshold) and temp_end:
|
87 |
+
temp_end = 0
|
88 |
+
if next_start < prev_end:
|
89 |
+
next_start = window_size_samples * i
|
90 |
+
|
91 |
+
if (speech_prob >= threshold) and not triggered:
|
92 |
+
triggered = True
|
93 |
+
current_speech['start'] = window_size_samples * i
|
94 |
+
continue
|
95 |
+
|
96 |
+
if triggered and (window_size_samples * i) - current_speech['start'] > max_speech_samples:
|
97 |
+
if prev_end:
|
98 |
+
current_speech['end'] = prev_end
|
99 |
+
speeches.append(current_speech)
|
100 |
+
current_speech = {}
|
101 |
+
if next_start < prev_end: # previously reached silence (< neg_thres) and is still not speech (< thres)
|
102 |
+
triggered = False
|
103 |
+
else:
|
104 |
+
current_speech['start'] = next_start
|
105 |
+
prev_end = next_start = temp_end = 0
|
106 |
+
else:
|
107 |
+
current_speech['end'] = window_size_samples * i
|
108 |
+
speeches.append(current_speech)
|
109 |
+
current_speech = {}
|
110 |
+
prev_end = next_start = temp_end = 0
|
111 |
+
triggered = False
|
112 |
+
continue
|
113 |
+
|
114 |
+
if (speech_prob < neg_threshold) and triggered:
|
115 |
+
if not temp_end:
|
116 |
+
temp_end = window_size_samples * i
|
117 |
+
if ((window_size_samples * i) - temp_end) > min_silence_samples_at_max_speech : # condition to avoid cutting in very short silence
|
118 |
+
prev_end = temp_end
|
119 |
+
if (window_size_samples * i) - temp_end < min_silence_samples:
|
120 |
+
continue
|
121 |
+
else:
|
122 |
+
current_speech['end'] = temp_end
|
123 |
+
if (current_speech['end'] - current_speech['start']) > min_speech_samples:
|
124 |
+
speeches.append(current_speech)
|
125 |
+
current_speech = {}
|
126 |
+
prev_end = next_start = temp_end = 0
|
127 |
+
triggered = False
|
128 |
+
continue
|
129 |
+
|
130 |
+
if current_speech and (audio_length_samples - current_speech['start']) > min_speech_samples:
|
131 |
+
current_speech['end'] = audio_length_samples
|
132 |
+
speeches.append(current_speech)
|
133 |
+
|
134 |
+
for i, speech in enumerate(speeches):
|
135 |
+
if i == 0:
|
136 |
+
speech['start'] = int(max(0, speech['start'] - speech_pad_samples))
|
137 |
+
if i != len(speeches) - 1:
|
138 |
+
silence_duration = speeches[i+1]['start'] - speech['end']
|
139 |
+
if silence_duration < 2 * speech_pad_samples:
|
140 |
+
speech['end'] += int(silence_duration // 2)
|
141 |
+
speeches[i+1]['start'] = int(max(0, speeches[i+1]['start'] - silence_duration // 2))
|
142 |
+
else:
|
143 |
+
speech['end'] = int(min(audio_length_samples, speech['end'] + speech_pad_samples))
|
144 |
+
speeches[i+1]['start'] = int(max(0, speeches[i+1]['start'] - speech_pad_samples))
|
145 |
+
else:
|
146 |
+
speech['end'] = int(min(audio_length_samples, speech['end'] + speech_pad_samples))
|
147 |
+
|
148 |
+
if return_seconds:
|
149 |
+
for speech_dict in speeches:
|
150 |
+
speech_dict['start'] = round(speech_dict['start'] / sampling_rate, rounding)
|
151 |
+
speech_dict['end'] = round(speech_dict['end'] / sampling_rate, rounding)
|
152 |
+
elif step > 1:
|
153 |
+
for speech_dict in speeches:
|
154 |
+
speech_dict['start'] *= step
|
155 |
+
speech_dict['end'] *= step
|
156 |
+
return speeches
|
157 |
+
|
158 |
+
def make_visualization(probs, step):
|
159 |
+
import pandas as pd
|
160 |
+
pd.DataFrame({'probs': probs},
|
161 |
+
index=[x * step for x in range(len(probs))]).plot(figsize=(16, 8),
|
162 |
+
kind='area', ylim=[0, 1.05], xlim=[0, len(probs) * step],
|
163 |
+
xlabel='seconds',
|
164 |
+
ylabel='speech probability',
|
165 |
+
colormap='tab20')
|
166 |
+
|