apply-ruff (#748)
Browse files- updated makefile (be37fd7da09122feb960037baf94ebb38d4fe2fc)
- updated makefile (50c352c7deb1b0501d4bd8ee8f33b6dff9ba3595)
- apply code style and quality checks to app.py (86c3dd57010f6b3edc41df0c8ebe3f31e265f995)
- apply code style and quality checks to envs.py (0fed1ec893f6a24e3effcdd33275221a2690bb6d)
- apply code style and quality checks to populate.py (bb51465efd2159c70e28d9a37a4fdb64262d52cf)
- apply code style and quality checks to utils.py (9d989a45c8a2d503357e93f4d69286f7971ee9de)
- apply code style and quality checks to filter_models.py (9b7814c00d977c716c5f06b4248bd6470043e01c)
- apply code style and quality checks to read_evals.py (d95d4a16bcb27159054316ed125c5d80769d91df)
Co-authored-by: Alina Lozovskaya <alozowski@users.noreply.huggingface.co>
- Makefile +14 -9
- app.py +26 -27
- src/display/utils.py +4 -3
- src/envs.py +0 -2
- src/leaderboard/filter_models.py +2 -3
- src/leaderboard/read_evals.py +27 -29
- src/populate.py +1 -3
@@ -1,13 +1,18 @@
|
|
1 |
-
.PHONY: style format
|
2 |
-
|
3 |
|
|
|
4 |
style:
|
5 |
-
|
6 |
-
|
7 |
-
ruff check --fix
|
8 |
-
|
9 |
|
|
|
10 |
quality:
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.PHONY: style format quality all
|
|
|
2 |
|
3 |
+
# Applies code style fixes to the specified file or directory
|
4 |
style:
|
5 |
+
@echo "Applying style fixes to $(file)"
|
6 |
+
ruff format $(file)
|
7 |
+
ruff check --fix $(file) --line-length 119
|
|
|
8 |
|
9 |
+
# Checks code quality for the specified file or directory
|
10 |
quality:
|
11 |
+
@echo "Checking code quality for $(file)"
|
12 |
+
ruff check $(file) --line-length 119
|
13 |
+
|
14 |
+
# Applies PEP8 formatting and checks the entire codebase
|
15 |
+
all:
|
16 |
+
@echo "Formatting and checking the entire codebase"
|
17 |
+
ruff format .
|
18 |
+
ruff check --fix . --line-length 119
|
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
import pandas as pd
|
3 |
import logging
|
4 |
import time
|
5 |
import gradio as gr
|
@@ -23,8 +22,6 @@ from src.display.utils import (
|
|
23 |
COLS,
|
24 |
EVAL_COLS,
|
25 |
EVAL_TYPES,
|
26 |
-
NUMERIC_INTERVALS,
|
27 |
-
TYPES,
|
28 |
AutoEvalColumn,
|
29 |
ModelType,
|
30 |
Precision,
|
@@ -51,11 +48,12 @@ from src.tools.collections import update_collections
|
|
51 |
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df
|
52 |
|
53 |
# Configure logging
|
54 |
-
logging.basicConfig(level=logging.INFO, format=
|
55 |
|
56 |
# Start ephemeral Spaces on PRs (see config in README.md)
|
57 |
enable_space_ci()
|
58 |
|
|
|
59 |
def restart_space():
|
60 |
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
61 |
|
@@ -68,6 +66,7 @@ def time_diff_wrapper(func):
|
|
68 |
diff = end_time - start_time
|
69 |
logging.info(f"Time taken for {func.__name__}: {diff} seconds")
|
70 |
return result
|
|
|
71 |
return wrapper
|
72 |
|
73 |
|
@@ -89,12 +88,13 @@ def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, ba
|
|
89 |
logging.info("Download successful")
|
90 |
return
|
91 |
except Exception as e:
|
92 |
-
wait_time = backoff_factor
|
93 |
logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s")
|
94 |
time.sleep(wait_time)
|
95 |
attempt += 1
|
96 |
raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts")
|
97 |
|
|
|
98 |
def init_space(full_init: bool = True):
|
99 |
"""Initializes the application space, loading only necessary data."""
|
100 |
if full_init:
|
@@ -120,12 +120,13 @@ def init_space(full_init: bool = True):
|
|
120 |
update_collections(original_df)
|
121 |
|
122 |
leaderboard_df = original_df.copy()
|
123 |
-
|
124 |
# Evaluation queue DataFrame retrieval is independent of initialization detail level
|
125 |
eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
126 |
|
127 |
return leaderboard_df, raw_data, original_df, eval_queue_dfs
|
128 |
|
|
|
129 |
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
|
130 |
# This controls whether a full initialization should be performed.
|
131 |
do_full_init = os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
|
@@ -153,36 +154,34 @@ with demo:
|
|
153 |
value=leaderboard_df,
|
154 |
datatype=[c.type for c in fields(AutoEvalColumn)],
|
155 |
select_columns=SelectColumns(
|
156 |
-
default_selection=[
|
157 |
-
c.name
|
158 |
-
for c in fields(AutoEvalColumn)
|
159 |
-
if c.displayed_by_default
|
160 |
-
],
|
161 |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
|
162 |
label="Select Columns to Display:",
|
163 |
),
|
164 |
-
search_columns=[
|
165 |
-
|
166 |
-
AutoEvalColumn.fullname.name,
|
167 |
-
AutoEvalColumn.license.name
|
168 |
-
],
|
169 |
-
hide_columns=[
|
170 |
-
c.name
|
171 |
-
for c in fields(AutoEvalColumn)
|
172 |
-
if c.hidden
|
173 |
-
],
|
174 |
filter_columns=[
|
175 |
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
176 |
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
177 |
-
ColumnFilter(
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
ColumnFilter(AutoEvalColumn.moe.name, type="boolean", label="MoE", default=False),
|
181 |
ColumnFilter(AutoEvalColumn.not_flagged.name, type="boolean", label="Flagged", default=True),
|
182 |
],
|
183 |
-
bool_checkboxgroup_label="Hide models"
|
184 |
)
|
185 |
-
|
186 |
with gr.TabItem("📈 Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
|
187 |
with gr.Row():
|
188 |
with gr.Column():
|
@@ -313,4 +312,4 @@ scheduler.add_job(restart_space, "interval", hours=3) # restarted every 3h
|
|
313 |
scheduler.add_job(update_dynamic_files, "interval", hours=2) # launched every 2 hour
|
314 |
scheduler.start()
|
315 |
|
316 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
import os
|
|
|
2 |
import logging
|
3 |
import time
|
4 |
import gradio as gr
|
|
|
22 |
COLS,
|
23 |
EVAL_COLS,
|
24 |
EVAL_TYPES,
|
|
|
|
|
25 |
AutoEvalColumn,
|
26 |
ModelType,
|
27 |
Precision,
|
|
|
48 |
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df
|
49 |
|
50 |
# Configure logging
|
51 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
52 |
|
53 |
# Start ephemeral Spaces on PRs (see config in README.md)
|
54 |
enable_space_ci()
|
55 |
|
56 |
+
|
57 |
def restart_space():
|
58 |
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
59 |
|
|
|
66 |
diff = end_time - start_time
|
67 |
logging.info(f"Time taken for {func.__name__}: {diff} seconds")
|
68 |
return result
|
69 |
+
|
70 |
return wrapper
|
71 |
|
72 |
|
|
|
88 |
logging.info("Download successful")
|
89 |
return
|
90 |
except Exception as e:
|
91 |
+
wait_time = backoff_factor**attempt
|
92 |
logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s")
|
93 |
time.sleep(wait_time)
|
94 |
attempt += 1
|
95 |
raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts")
|
96 |
|
97 |
+
|
98 |
def init_space(full_init: bool = True):
|
99 |
"""Initializes the application space, loading only necessary data."""
|
100 |
if full_init:
|
|
|
120 |
update_collections(original_df)
|
121 |
|
122 |
leaderboard_df = original_df.copy()
|
123 |
+
|
124 |
# Evaluation queue DataFrame retrieval is independent of initialization detail level
|
125 |
eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
126 |
|
127 |
return leaderboard_df, raw_data, original_df, eval_queue_dfs
|
128 |
|
129 |
+
|
130 |
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
|
131 |
# This controls whether a full initialization should be performed.
|
132 |
do_full_init = os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
|
|
|
154 |
value=leaderboard_df,
|
155 |
datatype=[c.type for c in fields(AutoEvalColumn)],
|
156 |
select_columns=SelectColumns(
|
157 |
+
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
|
|
|
|
|
|
|
|
158 |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
|
159 |
label="Select Columns to Display:",
|
160 |
),
|
161 |
+
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.fullname.name, AutoEvalColumn.license.name],
|
162 |
+
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
filter_columns=[
|
164 |
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
165 |
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
166 |
+
ColumnFilter(
|
167 |
+
AutoEvalColumn.params.name,
|
168 |
+
type="slider",
|
169 |
+
min=0,
|
170 |
+
max=150,
|
171 |
+
label="Select the number of parameters (B)",
|
172 |
+
),
|
173 |
+
ColumnFilter(
|
174 |
+
AutoEvalColumn.still_on_hub.name, type="boolean", label="Private or deleted", default=True
|
175 |
+
),
|
176 |
+
ColumnFilter(
|
177 |
+
AutoEvalColumn.merged.name, type="boolean", label="Contains a merge/moerge", default=True
|
178 |
+
),
|
179 |
ColumnFilter(AutoEvalColumn.moe.name, type="boolean", label="MoE", default=False),
|
180 |
ColumnFilter(AutoEvalColumn.not_flagged.name, type="boolean", label="Flagged", default=True),
|
181 |
],
|
182 |
+
bool_checkboxgroup_label="Hide models",
|
183 |
)
|
184 |
+
|
185 |
with gr.TabItem("📈 Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
|
186 |
with gr.Row():
|
187 |
with gr.Column():
|
|
|
312 |
scheduler.add_job(update_dynamic_files, "interval", hours=2) # launched every 2 hour
|
313 |
scheduler.start()
|
314 |
|
315 |
+
demo.queue(default_concurrency_limit=40).launch()
|
@@ -7,7 +7,8 @@ import pandas as pd
|
|
7 |
|
8 |
|
9 |
# Configure logging
|
10 |
-
logging.basicConfig(level=logging.INFO, format=
|
|
|
11 |
|
12 |
def parse_datetime(datetime_str):
|
13 |
formats = [
|
@@ -15,7 +16,7 @@ def parse_datetime(datetime_str):
|
|
15 |
"%Y-%m-%dT%H:%M:%S.%f", # Standard format with colons
|
16 |
"%Y-%m-%dT%H %M %S.%f", # Spaces as separator
|
17 |
]
|
18 |
-
|
19 |
for fmt in formats:
|
20 |
try:
|
21 |
return datetime.strptime(datetime_str, fmt)
|
@@ -25,6 +26,7 @@ def parse_datetime(datetime_str):
|
|
25 |
logging.error(f"No valid date format found for: {datetime_str}")
|
26 |
return datetime(1970, 1, 1)
|
27 |
|
|
|
28 |
def load_json_data(file_path):
|
29 |
"""Safely load JSON data from a file."""
|
30 |
try:
|
@@ -98,7 +100,6 @@ auto_eval_column_dict.append(["fullname", ColumnContent, ColumnContent("fullname
|
|
98 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
99 |
|
100 |
|
101 |
-
|
102 |
@dataclass(frozen=True)
|
103 |
class EvalQueueColumn: # Queue column
|
104 |
model = ColumnContent("model", "markdown", True)
|
|
|
7 |
|
8 |
|
9 |
# Configure logging
|
10 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
11 |
+
|
12 |
|
13 |
def parse_datetime(datetime_str):
|
14 |
formats = [
|
|
|
16 |
"%Y-%m-%dT%H:%M:%S.%f", # Standard format with colons
|
17 |
"%Y-%m-%dT%H %M %S.%f", # Spaces as separator
|
18 |
]
|
19 |
+
|
20 |
for fmt in formats:
|
21 |
try:
|
22 |
return datetime.strptime(datetime_str, fmt)
|
|
|
26 |
logging.error(f"No valid date format found for: {datetime_str}")
|
27 |
return datetime(1970, 1, 1)
|
28 |
|
29 |
+
|
30 |
def load_json_data(file_path):
|
31 |
"""Safely load JSON data from a file."""
|
32 |
try:
|
|
|
100 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
101 |
|
102 |
|
|
|
103 |
@dataclass(frozen=True)
|
104 |
class EvalQueueColumn: # Queue column
|
105 |
model = ColumnContent("model", "markdown", True)
|
@@ -1,6 +1,4 @@
|
|
1 |
import os
|
2 |
-
import logging
|
3 |
-
|
4 |
from huggingface_hub import HfApi
|
5 |
|
6 |
# clone / pull the lmeh eval data
|
|
|
1 |
import os
|
|
|
|
|
2 |
from huggingface_hub import HfApi
|
3 |
|
4 |
# clone / pull the lmeh eval data
|
@@ -137,9 +137,9 @@ def flag_models(leaderboard_data: list[dict]):
|
|
137 |
if model_data[AutoEvalColumn.not_flagged.name]:
|
138 |
flag_key = model_data[AutoEvalColumn.fullname.name]
|
139 |
else:
|
140 |
-
|
141 |
flag_key = "merged"
|
142 |
-
|
143 |
# Reverse the logic: Check for non-flagged models instead
|
144 |
if flag_key in FLAGGED_MODELS:
|
145 |
issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
|
@@ -171,4 +171,3 @@ def remove_forbidden_models(leaderboard_data: list[dict]):
|
|
171 |
def filter_models_flags(leaderboard_data: list[dict]):
|
172 |
leaderboard_data = remove_forbidden_models(leaderboard_data)
|
173 |
flag_models(leaderboard_data)
|
174 |
-
|
|
|
137 |
if model_data[AutoEvalColumn.not_flagged.name]:
|
138 |
flag_key = model_data[AutoEvalColumn.fullname.name]
|
139 |
else:
|
140 |
+
# Merges and moes are flagged
|
141 |
flag_key = "merged"
|
142 |
+
|
143 |
# Reverse the logic: Check for non-flagged models instead
|
144 |
if flag_key in FLAGGED_MODELS:
|
145 |
issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
|
|
|
171 |
def filter_models_flags(leaderboard_data: list[dict]):
|
172 |
leaderboard_data = remove_forbidden_models(leaderboard_data)
|
173 |
flag_models(leaderboard_data)
|
|
@@ -16,36 +16,36 @@ from src.display.formatting import make_clickable_model
|
|
16 |
from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType, parse_datetime
|
17 |
|
18 |
# Configure logging
|
19 |
-
logging.basicConfig(level=logging.INFO, format=
|
|
|
20 |
|
21 |
@dataclass
|
22 |
class EvalResult:
|
23 |
# Also see src.display.utils.AutoEvalColumn for what will be displayed.
|
24 |
-
eval_name: str
|
25 |
-
full_model: str
|
26 |
org: Optional[str]
|
27 |
model: str
|
28 |
-
revision: str
|
29 |
results: Dict[str, float]
|
30 |
precision: Precision = Precision.Unknown
|
31 |
-
model_type: ModelType = ModelType.Unknown
|
32 |
weight_type: WeightType = WeightType.Original
|
33 |
-
architecture: str = "Unknown"
|
34 |
license: str = "?"
|
35 |
likes: int = 0
|
36 |
num_params: int = 0
|
37 |
-
date: str = ""
|
38 |
still_on_hub: bool = True
|
39 |
is_merge: bool = False
|
40 |
not_flagged: bool = False
|
41 |
status: str = "FINISHED"
|
42 |
# List of tags, initialized to a new empty list for each instance to avoid the pitfalls of mutable default arguments.
|
43 |
tags: List[str] = field(default_factory=list)
|
44 |
-
|
45 |
-
|
46 |
@classmethod
|
47 |
-
def init_from_json_file(cls, json_filepath: str) ->
|
48 |
-
with open(json_filepath,
|
49 |
data = json.load(fp)
|
50 |
|
51 |
config = data.get("config_general", {})
|
@@ -72,7 +72,7 @@ class EvalResult:
|
|
72 |
model=model,
|
73 |
results=results,
|
74 |
precision=precision,
|
75 |
-
revision=config.get("model_sha", "")
|
76 |
)
|
77 |
|
78 |
@staticmethod
|
@@ -118,9 +118,8 @@ class EvalResult:
|
|
118 |
|
119 |
mean_acc = np.mean(accs) * 100.0
|
120 |
results[task.benchmark] = mean_acc
|
121 |
-
|
122 |
-
return results
|
123 |
|
|
|
124 |
|
125 |
def update_with_request_file(self, requests_path):
|
126 |
"""Finds the relevant request file for the current model and updates info with it."""
|
@@ -130,17 +129,17 @@ class EvalResult:
|
|
130 |
logging.warning(f"No request file for {self.org}/{self.model}")
|
131 |
self.status = "FAILED"
|
132 |
return
|
133 |
-
|
134 |
with open(request_file, "r") as f:
|
135 |
request = json.load(f)
|
136 |
-
|
137 |
self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
|
138 |
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
139 |
self.num_params = int(request.get("params", 0)) # Ensuring type safety
|
140 |
self.date = request.get("submitted_time", "")
|
141 |
self.architecture = request.get("architectures", "Unknown")
|
142 |
self.status = request.get("status", "FAILED")
|
143 |
-
|
144 |
except FileNotFoundError:
|
145 |
self.status = "FAILED"
|
146 |
logging.error(f"Request file: {request_file} not found for {self.org}/{self.model}")
|
@@ -154,7 +153,6 @@ class EvalResult:
|
|
154 |
self.status = "FAILED"
|
155 |
logging.error(f"Unexpected error {e} for {self.org}/{self.model}")
|
156 |
|
157 |
-
|
158 |
def update_with_dynamic_file_dict(self, file_dict):
|
159 |
"""Update object attributes based on the provided dictionary, with error handling for missing keys and type validation."""
|
160 |
# Default values set for optional or potentially missing keys.
|
@@ -162,11 +160,10 @@ class EvalResult:
|
|
162 |
self.likes = int(file_dict.get("likes", 0)) # Ensure likes is treated as an integer
|
163 |
self.still_on_hub = file_dict.get("still_on_hub", False) # Default to False if key is missing
|
164 |
self.tags = file_dict.get("tags", [])
|
165 |
-
|
166 |
# Calculate `flagged` only if 'tags' is not empty and avoid calculating each time
|
167 |
self.not_flagged = not (any("flagged" in tag for tag in self.tags))
|
168 |
|
169 |
-
|
170 |
def to_dict(self):
|
171 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
172 |
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
@@ -185,8 +182,10 @@ class EvalResult:
|
|
185 |
AutoEvalColumn.likes.name: self.likes,
|
186 |
AutoEvalColumn.params.name: self.num_params,
|
187 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
188 |
-
AutoEvalColumn.merged.name: not(
|
189 |
-
AutoEvalColumn.moe.name: not (
|
|
|
|
|
190 |
AutoEvalColumn.not_flagged.name: self.not_flagged,
|
191 |
}
|
192 |
|
@@ -194,16 +193,16 @@ class EvalResult:
|
|
194 |
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
195 |
|
196 |
return data_dict
|
197 |
-
|
198 |
|
199 |
def get_request_file_for_model(requests_path, model_name, precision):
|
200 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
201 |
requests_path = Path(requests_path)
|
202 |
pattern = f"{model_name}_eval_request_*.json"
|
203 |
-
|
204 |
# Using pathlib to find files matching the pattern
|
205 |
request_files = list(requests_path.glob(pattern))
|
206 |
-
|
207 |
# Sort the files by name in descending order to mimic 'reverse=True'
|
208 |
request_files.sort(reverse=True)
|
209 |
|
@@ -214,7 +213,7 @@ def get_request_file_for_model(requests_path, model_name, precision):
|
|
214 |
req_content = json.load(f)
|
215 |
if req_content["status"] == "FINISHED" and req_content["precision"] == precision.split(".")[-1]:
|
216 |
request_file = str(request_file)
|
217 |
-
|
218 |
# Return empty string if no file found that matches criteria
|
219 |
return request_file
|
220 |
|
@@ -223,9 +222,9 @@ def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: st
|
|
223 |
"""From the path of the results folder root, extract all needed info for results"""
|
224 |
with open(dynamic_path) as f:
|
225 |
dynamic_data = json.load(f)
|
226 |
-
|
227 |
results_path = Path(results_path)
|
228 |
-
model_files = list(results_path.rglob(
|
229 |
model_files.sort(key=lambda file: parse_datetime(file.stem.removeprefix("results_")))
|
230 |
|
231 |
eval_results = {}
|
@@ -260,4 +259,3 @@ def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: st
|
|
260 |
continue
|
261 |
|
262 |
return results
|
263 |
-
|
|
|
16 |
from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType, parse_datetime
|
17 |
|
18 |
# Configure logging
|
19 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
20 |
+
|
21 |
|
22 |
@dataclass
|
23 |
class EvalResult:
|
24 |
# Also see src.display.utils.AutoEvalColumn for what will be displayed.
|
25 |
+
eval_name: str # org_model_precision (uid)
|
26 |
+
full_model: str # org/model (path on hub)
|
27 |
org: Optional[str]
|
28 |
model: str
|
29 |
+
revision: str # commit hash, "" if main
|
30 |
results: Dict[str, float]
|
31 |
precision: Precision = Precision.Unknown
|
32 |
+
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
33 |
weight_type: WeightType = WeightType.Original
|
34 |
+
architecture: str = "Unknown" # From config file
|
35 |
license: str = "?"
|
36 |
likes: int = 0
|
37 |
num_params: int = 0
|
38 |
+
date: str = "" # submission date of request file
|
39 |
still_on_hub: bool = True
|
40 |
is_merge: bool = False
|
41 |
not_flagged: bool = False
|
42 |
status: str = "FINISHED"
|
43 |
# List of tags, initialized to a new empty list for each instance to avoid the pitfalls of mutable default arguments.
|
44 |
tags: List[str] = field(default_factory=list)
|
45 |
+
|
|
|
46 |
@classmethod
|
47 |
+
def init_from_json_file(cls, json_filepath: str) -> "EvalResult":
|
48 |
+
with open(json_filepath, "r") as fp:
|
49 |
data = json.load(fp)
|
50 |
|
51 |
config = data.get("config_general", {})
|
|
|
72 |
model=model,
|
73 |
results=results,
|
74 |
precision=precision,
|
75 |
+
revision=config.get("model_sha", ""),
|
76 |
)
|
77 |
|
78 |
@staticmethod
|
|
|
118 |
|
119 |
mean_acc = np.mean(accs) * 100.0
|
120 |
results[task.benchmark] = mean_acc
|
|
|
|
|
121 |
|
122 |
+
return results
|
123 |
|
124 |
def update_with_request_file(self, requests_path):
|
125 |
"""Finds the relevant request file for the current model and updates info with it."""
|
|
|
129 |
logging.warning(f"No request file for {self.org}/{self.model}")
|
130 |
self.status = "FAILED"
|
131 |
return
|
132 |
+
|
133 |
with open(request_file, "r") as f:
|
134 |
request = json.load(f)
|
135 |
+
|
136 |
self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
|
137 |
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
138 |
self.num_params = int(request.get("params", 0)) # Ensuring type safety
|
139 |
self.date = request.get("submitted_time", "")
|
140 |
self.architecture = request.get("architectures", "Unknown")
|
141 |
self.status = request.get("status", "FAILED")
|
142 |
+
|
143 |
except FileNotFoundError:
|
144 |
self.status = "FAILED"
|
145 |
logging.error(f"Request file: {request_file} not found for {self.org}/{self.model}")
|
|
|
153 |
self.status = "FAILED"
|
154 |
logging.error(f"Unexpected error {e} for {self.org}/{self.model}")
|
155 |
|
|
|
156 |
def update_with_dynamic_file_dict(self, file_dict):
|
157 |
"""Update object attributes based on the provided dictionary, with error handling for missing keys and type validation."""
|
158 |
# Default values set for optional or potentially missing keys.
|
|
|
160 |
self.likes = int(file_dict.get("likes", 0)) # Ensure likes is treated as an integer
|
161 |
self.still_on_hub = file_dict.get("still_on_hub", False) # Default to False if key is missing
|
162 |
self.tags = file_dict.get("tags", [])
|
163 |
+
|
164 |
# Calculate `flagged` only if 'tags' is not empty and avoid calculating each time
|
165 |
self.not_flagged = not (any("flagged" in tag for tag in self.tags))
|
166 |
|
|
|
167 |
def to_dict(self):
|
168 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
169 |
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
|
|
182 |
AutoEvalColumn.likes.name: self.likes,
|
183 |
AutoEvalColumn.params.name: self.num_params,
|
184 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
185 |
+
AutoEvalColumn.merged.name: not ("merge" in self.tags if self.tags else False),
|
186 |
+
AutoEvalColumn.moe.name: not (
|
187 |
+
("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower()
|
188 |
+
),
|
189 |
AutoEvalColumn.not_flagged.name: self.not_flagged,
|
190 |
}
|
191 |
|
|
|
193 |
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
194 |
|
195 |
return data_dict
|
196 |
+
|
197 |
|
198 |
def get_request_file_for_model(requests_path, model_name, precision):
|
199 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
200 |
requests_path = Path(requests_path)
|
201 |
pattern = f"{model_name}_eval_request_*.json"
|
202 |
+
|
203 |
# Using pathlib to find files matching the pattern
|
204 |
request_files = list(requests_path.glob(pattern))
|
205 |
+
|
206 |
# Sort the files by name in descending order to mimic 'reverse=True'
|
207 |
request_files.sort(reverse=True)
|
208 |
|
|
|
213 |
req_content = json.load(f)
|
214 |
if req_content["status"] == "FINISHED" and req_content["precision"] == precision.split(".")[-1]:
|
215 |
request_file = str(request_file)
|
216 |
+
|
217 |
# Return empty string if no file found that matches criteria
|
218 |
return request_file
|
219 |
|
|
|
222 |
"""From the path of the results folder root, extract all needed info for results"""
|
223 |
with open(dynamic_path) as f:
|
224 |
dynamic_data = json.load(f)
|
225 |
+
|
226 |
results_path = Path(results_path)
|
227 |
+
model_files = list(results_path.rglob("results_*.json"))
|
228 |
model_files.sort(key=lambda file: parse_datetime(file.stem.removeprefix("results_")))
|
229 |
|
230 |
eval_results = {}
|
|
|
259 |
continue
|
260 |
|
261 |
return results
|
|
@@ -1,5 +1,3 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
import pathlib
|
4 |
import pandas as pd
|
5 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
@@ -21,7 +19,7 @@ def get_evaluation_queue_df(save_path, cols):
|
|
21 |
save_path = pathlib.Path(save_path)
|
22 |
all_evals = []
|
23 |
|
24 |
-
for path in save_path.rglob(
|
25 |
data = load_json_data(path)
|
26 |
if data:
|
27 |
all_evals.append(_process_model_data(data))
|
|
|
|
|
|
|
1 |
import pathlib
|
2 |
import pandas as pd
|
3 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
|
|
19 |
save_path = pathlib.Path(save_path)
|
20 |
all_evals = []
|
21 |
|
22 |
+
for path in save_path.rglob("*.json"):
|
23 |
data = load_json_data(path)
|
24 |
if data:
|
25 |
all_evals.append(_process_model_data(data))
|