dataframe-improvement (#671)
Browse files- Updated init_space() mostly (e34e357137b1ac54e7f2db292b77c14d4c7cf0ed)
- Updated collections.py (2293858bb036fc9f69040d0210b6db1678b7bdf9)
- Updated populate.py (6b9cbbe716f8f1b4c4d5c3925fbc1d1c27381b5f)
- Updated gitignore (122c7afd045b064431b1ae27c3c543c9dbd1a482)
- bugfix and populate refactoring (2e74c81428ac062c254bc55b88eadf06d877f532)
- updated utils.py (f073c67652ed110738fb31ccb2abf2dd2c2b5156)
- removed comments from populate.py (79ad1ade160afd2ba0f95bd1dec9e8534121f132)
- fixing envs CACHE_PATH check (63dac32758e6a31233c5c57913eda3b53e53c266)
- debugging CACHE_PATH in envs.py (6a5081fbccfd95fb301ba4d8cb446e2c101b337c)
- debugging CACHE_PATH in envs.py (e243a5f654ee69c2a62cb3dd438a7dedc3631c22)
- debugging CACHE_PATH in envs.py (5a8f7dc96273e99cd0895dc13e4a4e476c1eb629)
- small fixed (d8bf61b20d803025270c3395b0b0bf1d68af5576)
Co-authored-by: Alina Lozovskaya <alozowski@users.noreply.huggingface.co>
- .gitignore +5 -0
- .python-version +0 -1
- app.py +39 -45
- src/display/utils.py +11 -1
- src/envs.py +15 -4
- src/populate.py +38 -51
- src/tools/collections.py +48 -53
@@ -1,10 +1,15 @@
|
|
1 |
venv/
|
|
|
2 |
__pycache__/
|
3 |
.env
|
4 |
.ipynb_checkpoints
|
5 |
*ipynb
|
6 |
.vscode/
|
7 |
.DS_Store
|
|
|
|
|
|
|
|
|
8 |
|
9 |
eval-queue/
|
10 |
eval-results/
|
|
|
1 |
venv/
|
2 |
+
.venv/
|
3 |
__pycache__/
|
4 |
.env
|
5 |
.ipynb_checkpoints
|
6 |
*ipynb
|
7 |
.vscode/
|
8 |
.DS_Store
|
9 |
+
.ruff_cache/
|
10 |
+
.python-version
|
11 |
+
.profile_app.python
|
12 |
+
*pstats
|
13 |
|
14 |
eval-queue/
|
15 |
eval-results/
|
@@ -1 +0,0 @@
|
|
1 |
-
3.10.0
|
|
|
|
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
@@ -47,6 +48,7 @@ from src.submission.submit import add_new_eval
|
|
47 |
from src.tools.collections import update_collections
|
48 |
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df
|
49 |
|
|
|
50 |
# Start ephemeral Spaces on PRs (see config in README.md)
|
51 |
enable_space_ci()
|
52 |
|
@@ -55,44 +57,34 @@ def restart_space():
|
|
55 |
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
56 |
|
57 |
|
58 |
-
def
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
snapshot_download(
|
63 |
-
repo_id=QUEUE_REPO,
|
64 |
-
local_dir=EVAL_REQUESTS_PATH,
|
65 |
-
repo_type="dataset",
|
66 |
-
tqdm_class=None,
|
67 |
-
etag_timeout=30,
|
68 |
-
max_workers=8,
|
69 |
-
)
|
70 |
-
except Exception:
|
71 |
-
restart_space()
|
72 |
try:
|
73 |
-
print(
|
74 |
snapshot_download(
|
75 |
-
repo_id=
|
76 |
-
local_dir=
|
77 |
-
repo_type=
|
78 |
tqdm_class=None,
|
79 |
etag_timeout=30,
|
80 |
max_workers=8,
|
81 |
)
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
|
97 |
raw_data, original_df = get_leaderboard_df(
|
98 |
results_path=EVAL_RESULTS_PATH,
|
@@ -101,18 +93,12 @@ def init_space(full_init: bool = True):
|
|
101 |
cols=COLS,
|
102 |
benchmark_cols=BENCHMARK_COLS,
|
103 |
)
|
104 |
-
update_collections(original_df
|
105 |
leaderboard_df = original_df.copy()
|
|
|
|
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
(
|
110 |
-
finished_eval_queue_df,
|
111 |
-
running_eval_queue_df,
|
112 |
-
pending_eval_queue_df,
|
113 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
114 |
-
|
115 |
-
return leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
|
116 |
|
117 |
|
118 |
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
|
@@ -121,9 +107,14 @@ do_full_init = os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
|
|
121 |
|
122 |
# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable.
|
123 |
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag.
|
124 |
-
leaderboard_df,
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
|
129 |
# Searching and filtering
|
@@ -406,6 +397,7 @@ with demo:
|
|
406 |
with gr.TabItem("📈 Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
|
407 |
with gr.Row():
|
408 |
with gr.Column():
|
|
|
409 |
chart = create_metric_plot_obj(
|
410 |
plot_df,
|
411 |
[AutoEvalColumn.average.name],
|
@@ -413,12 +405,14 @@ with demo:
|
|
413 |
)
|
414 |
gr.Plot(value=chart, min_width=500)
|
415 |
with gr.Column():
|
|
|
416 |
chart = create_metric_plot_obj(
|
417 |
plot_df,
|
418 |
BENCHMARK_COLS,
|
419 |
title="Top Scores and Human Baseline Over Time (from last update)",
|
420 |
)
|
421 |
gr.Plot(value=chart, min_width=500)
|
|
|
422 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3):
|
423 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
424 |
|
|
|
1 |
import os
|
2 |
+
import logging
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
48 |
from src.tools.collections import update_collections
|
49 |
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df
|
50 |
|
51 |
+
|
52 |
# Start ephemeral Spaces on PRs (see config in README.md)
|
53 |
enable_space_ci()
|
54 |
|
|
|
57 |
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
58 |
|
59 |
|
60 |
+
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3):
|
61 |
+
"""Attempt to download dataset with retries."""
|
62 |
+
attempt = 0
|
63 |
+
while attempt < max_attempts:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
try:
|
65 |
+
print(f"Downloading {repo_id} to {local_dir}")
|
66 |
snapshot_download(
|
67 |
+
repo_id=repo_id,
|
68 |
+
local_dir=local_dir,
|
69 |
+
repo_type=repo_type,
|
70 |
tqdm_class=None,
|
71 |
etag_timeout=30,
|
72 |
max_workers=8,
|
73 |
)
|
74 |
+
return
|
75 |
+
except Exception as e:
|
76 |
+
logging.error(f"Error downloading {repo_id}: {e}")
|
77 |
+
attempt += 1
|
78 |
+
if attempt == max_attempts:
|
79 |
+
restart_space()
|
80 |
+
|
81 |
+
|
82 |
+
def init_space(full_init: bool = True):
|
83 |
+
"""Initializes the application space, loading only necessary data."""
|
84 |
+
if full_init:
|
85 |
+
download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH)
|
86 |
+
download_dataset(DYNAMIC_INFO_REPO, DYNAMIC_INFO_PATH)
|
87 |
+
download_dataset(RESULTS_REPO, EVAL_RESULTS_PATH)
|
88 |
|
89 |
raw_data, original_df = get_leaderboard_df(
|
90 |
results_path=EVAL_RESULTS_PATH,
|
|
|
93 |
cols=COLS,
|
94 |
benchmark_cols=BENCHMARK_COLS,
|
95 |
)
|
96 |
+
update_collections(original_df)
|
97 |
leaderboard_df = original_df.copy()
|
98 |
+
|
99 |
+
eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
100 |
|
101 |
+
return leaderboard_df, raw_data, original_df, eval_queue_dfs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
|
104 |
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
|
|
|
107 |
|
108 |
# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable.
|
109 |
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag.
|
110 |
+
leaderboard_df, raw_data, original_df, eval_queue_dfs = init_space(full_init=do_full_init)
|
111 |
+
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs
|
112 |
+
|
113 |
+
|
114 |
+
# Data processing for plots now only on demand in the respective Gradio tab
|
115 |
+
def load_and_create_plots():
|
116 |
+
plot_df = create_plot_df(create_scores_df(raw_data))
|
117 |
+
return plot_df
|
118 |
|
119 |
|
120 |
# Searching and filtering
|
|
|
397 |
with gr.TabItem("📈 Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
|
398 |
with gr.Row():
|
399 |
with gr.Column():
|
400 |
+
plot_df = load_and_create_plots()
|
401 |
chart = create_metric_plot_obj(
|
402 |
plot_df,
|
403 |
[AutoEvalColumn.average.name],
|
|
|
405 |
)
|
406 |
gr.Plot(value=chart, min_width=500)
|
407 |
with gr.Column():
|
408 |
+
plot_df = load_and_create_plots()
|
409 |
chart = create_metric_plot_obj(
|
410 |
plot_df,
|
411 |
BENCHMARK_COLS,
|
412 |
title="Top Scores and Human Baseline Over Time (from last update)",
|
413 |
)
|
414 |
gr.Plot(value=chart, min_width=500)
|
415 |
+
|
416 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3):
|
417 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
418 |
|
@@ -1,9 +1,19 @@
|
|
1 |
from dataclasses import dataclass, make_dataclass
|
2 |
from enum import Enum
|
3 |
-
|
4 |
import pandas as pd
|
5 |
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def fields(raw_class):
|
8 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
9 |
|
|
|
1 |
from dataclasses import dataclass, make_dataclass
|
2 |
from enum import Enum
|
3 |
+
import json
|
4 |
import pandas as pd
|
5 |
|
6 |
|
7 |
+
def load_json_data(file_path):
|
8 |
+
"""Safely load JSON data from a file."""
|
9 |
+
try:
|
10 |
+
with open(file_path, "r") as file:
|
11 |
+
return json.load(file)
|
12 |
+
except json.JSONDecodeError:
|
13 |
+
print(f"Error reading JSON from {file_path}")
|
14 |
+
return None # Or raise an exception
|
15 |
+
|
16 |
+
|
17 |
def fields(raw_class):
|
18 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
19 |
|
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
|
3 |
from huggingface_hub import HfApi
|
4 |
|
@@ -15,11 +16,21 @@ PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results"
|
|
15 |
|
16 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
DYNAMIC_INFO_FILE_PATH = os.path.join(DYNAMIC_INFO_PATH, "model_infos.json")
|
24 |
|
25 |
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
|
|
|
1 |
import os
|
2 |
+
import logging
|
3 |
|
4 |
from huggingface_hub import HfApi
|
5 |
|
|
|
16 |
|
17 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
18 |
|
19 |
+
HF_HOME = os.getenv("HF_HOME", ".")
|
20 |
|
21 |
+
# Check HF_HOME write access
|
22 |
+
print(f"Initial HF_HOME set to: {HF_HOME}")
|
23 |
+
|
24 |
+
if not os.access(HF_HOME, os.W_OK):
|
25 |
+
print(f"No write access to HF_HOME: {HF_HOME}. Resetting to current directory.")
|
26 |
+
HF_HOME = "."
|
27 |
+
os.environ["HF_HOME"] = HF_HOME
|
28 |
+
else:
|
29 |
+
print(f"Write access confirmed for HF_HOME")
|
30 |
+
|
31 |
+
EVAL_REQUESTS_PATH = os.path.join(HF_HOME, "eval-queue")
|
32 |
+
EVAL_RESULTS_PATH = os.path.join(HF_HOME, "eval-results")
|
33 |
+
DYNAMIC_INFO_PATH = os.path.join(HF_HOME, "dynamic-info")
|
34 |
DYNAMIC_INFO_FILE_PATH = os.path.join(DYNAMIC_INFO_PATH, "model_infos.json")
|
35 |
|
36 |
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
|
@@ -1,68 +1,55 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
-
|
4 |
import pandas as pd
|
5 |
-
|
6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn, baseline_row
|
8 |
from src.leaderboard.filter_models import filter_models_flags
|
9 |
from src.leaderboard.read_evals import get_raw_eval_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
-
def
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
filter_models_flags(all_data_json)
|
20 |
|
21 |
df = pd.DataFrame.from_records(all_data_json)
|
22 |
-
print(df.columns)
|
23 |
-
print(df[df["model_name_for_query"] == "databricks/dbrx-base"])
|
24 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
25 |
df = df[cols].round(decimals=2)
|
26 |
-
|
27 |
-
# filter out if any of the benchmarks have not been produced
|
28 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
29 |
return raw_data, df
|
30 |
|
31 |
-
|
32 |
-
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
33 |
-
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
34 |
-
all_evals = []
|
35 |
-
|
36 |
-
for entry in entries:
|
37 |
-
if ".json" in entry:
|
38 |
-
file_path = os.path.join(save_path, entry)
|
39 |
-
with open(file_path) as fp:
|
40 |
-
data = json.load(fp)
|
41 |
-
|
42 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
43 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
44 |
-
|
45 |
-
all_evals.append(data)
|
46 |
-
elif ".md" not in entry:
|
47 |
-
# this is a folder
|
48 |
-
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
|
49 |
-
for sub_entry in sub_entries:
|
50 |
-
file_path = os.path.join(save_path, entry, sub_entry)
|
51 |
-
with open(file_path) as fp:
|
52 |
-
try:
|
53 |
-
data = json.load(fp)
|
54 |
-
except json.JSONDecodeError:
|
55 |
-
print(f"Error reading {file_path}")
|
56 |
-
continue
|
57 |
-
|
58 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
59 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
60 |
-
all_evals.append(data)
|
61 |
-
|
62 |
-
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
63 |
-
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
64 |
-
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
65 |
-
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
66 |
-
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
67 |
-
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
68 |
-
return df_finished[cols], df_running[cols], df_pending[cols]
|
|
|
1 |
import json
|
2 |
import os
|
3 |
+
import pathlib
|
4 |
import pandas as pd
|
|
|
5 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
6 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn, baseline_row
|
7 |
from src.leaderboard.filter_models import filter_models_flags
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
+
from src.display.utils import load_json_data
|
10 |
+
|
11 |
+
|
12 |
+
def _process_model_data(entry, model_name_key="model", revision_key="revision"):
|
13 |
+
"""Enrich model data with clickable links and revisions."""
|
14 |
+
entry[EvalQueueColumn.model.name] = make_clickable_model(entry.get(model_name_key, ""))
|
15 |
+
entry[EvalQueueColumn.revision.name] = entry.get(revision_key, "main")
|
16 |
+
return entry
|
17 |
|
18 |
|
19 |
+
def get_evaluation_queue_df(save_path, cols):
|
20 |
+
"""Generate dataframes for pending, running, and finished evaluation entries."""
|
21 |
+
save_path = pathlib.Path(save_path)
|
22 |
+
all_evals = []
|
23 |
+
|
24 |
+
for path in save_path.rglob('*.json'):
|
25 |
+
data = load_json_data(path)
|
26 |
+
if data:
|
27 |
+
all_evals.append(_process_model_data(data))
|
28 |
+
|
29 |
+
# Organizing data by status
|
30 |
+
status_map = {
|
31 |
+
"PENDING": ["PENDING", "RERUN"],
|
32 |
+
"RUNNING": ["RUNNING"],
|
33 |
+
"FINISHED": ["FINISHED", "PENDING_NEW_EVAL"],
|
34 |
+
}
|
35 |
+
status_dfs = {status: [] for status in status_map}
|
36 |
+
for eval_data in all_evals:
|
37 |
+
for status, extra_statuses in status_map.items():
|
38 |
+
if eval_data["status"] in extra_statuses:
|
39 |
+
status_dfs[status].append(eval_data)
|
40 |
+
|
41 |
+
return tuple(pd.DataFrame(status_dfs[status], columns=cols) for status in ["FINISHED", "RUNNING", "PENDING"])
|
42 |
+
|
43 |
+
|
44 |
+
def get_leaderboard_df(results_path, requests_path, dynamic_path, cols, benchmark_cols):
|
45 |
+
"""Retrieve and process leaderboard data."""
|
46 |
+
raw_data = get_raw_eval_results(results_path, requests_path, dynamic_path)
|
47 |
+
all_data_json = [model.to_dict() for model in raw_data] + [baseline_row]
|
48 |
filter_models_flags(all_data_json)
|
49 |
|
50 |
df = pd.DataFrame.from_records(all_data_json)
|
|
|
|
|
51 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
52 |
df = df[cols].round(decimals=2)
|
|
|
|
|
53 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
54 |
return raw_data, df
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -17,65 +17,60 @@ intervals = {
|
|
17 |
}
|
18 |
|
19 |
|
20 |
-
def
|
21 |
-
"""
|
22 |
-
|
23 |
-
|
24 |
-
collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=H4_TOKEN)
|
25 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
|
|
|
|
26 |
|
27 |
-
cur_best_models = []
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
continue
|
33 |
-
for size in intervals:
|
34 |
-
# We filter the df to gather the relevant models
|
35 |
-
type_emoji = [t[0] for t in type.value.symbol]
|
36 |
-
filtered_df = df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
37 |
|
38 |
-
numeric_interval = pd.IntervalIndex([intervals[size]])
|
39 |
-
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
40 |
-
filtered_df = filtered_df.loc[mask]
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
best_models = list(
|
43 |
-
filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.dummy.name]
|
44 |
)
|
45 |
-
print(
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
item_type="model",
|
56 |
-
exists_ok=True,
|
57 |
-
note=f"Best {type.to_str(' ')} model of around {size} on the leaderboard today!",
|
58 |
-
token=H4_TOKEN,
|
59 |
-
)
|
60 |
-
if (
|
61 |
-
len(collection.items) > cur_len_collection
|
62 |
-
): # we added an item - we make sure its position is correct
|
63 |
-
item_object_id = collection.items[-1].item_object_id
|
64 |
-
update_collection_item(
|
65 |
-
collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix
|
66 |
-
)
|
67 |
-
cur_len_collection = len(collection.items)
|
68 |
-
cur_best_models.append(model)
|
69 |
-
break
|
70 |
-
except HfHubHTTPError:
|
71 |
-
continue
|
72 |
-
|
73 |
-
collection = get_collection(PATH_TO_COLLECTION, token=H4_TOKEN)
|
74 |
-
for item in collection.items:
|
75 |
-
if item.item_id not in cur_best_models:
|
76 |
-
try:
|
77 |
-
delete_collection_item(
|
78 |
-
collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=H4_TOKEN
|
79 |
-
)
|
80 |
-
except HfHubHTTPError:
|
81 |
-
continue
|
|
|
17 |
}
|
18 |
|
19 |
|
20 |
+
def _filter_by_type_and_size(df, model_type, size_interval):
|
21 |
+
"""Filter DataFrame by model type and parameter size interval."""
|
22 |
+
type_emoji = model_type.value.symbol[0]
|
23 |
+
filtered_df = df[df[AutoEvalColumn.model_type_symbol.name] == type_emoji]
|
|
|
24 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
25 |
+
mask = params_column.apply(lambda x: x in size_interval)
|
26 |
+
return filtered_df.loc[mask]
|
27 |
|
|
|
28 |
|
29 |
+
def _add_models_to_collection(collection, models, model_type, size):
|
30 |
+
"""Add best models to the collection and update positions."""
|
31 |
+
cur_len_collection = len(collection.items)
|
32 |
+
for ix, model in enumerate(models, start=1):
|
33 |
+
try:
|
34 |
+
collection = add_collection_item(
|
35 |
+
PATH_TO_COLLECTION,
|
36 |
+
item_id=model,
|
37 |
+
item_type="model",
|
38 |
+
exists_ok=True,
|
39 |
+
note=f"Best {model_type.to_str(' ')} model of around {size} on the leaderboard today!",
|
40 |
+
token=H4_TOKEN,
|
41 |
+
)
|
42 |
+
# Ensure position is correct if item was added
|
43 |
+
if len(collection.items) > cur_len_collection:
|
44 |
+
item_object_id = collection.items[-1].item_object_id
|
45 |
+
update_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix)
|
46 |
+
cur_len_collection = len(collection.items)
|
47 |
+
break # assuming we only add the top model
|
48 |
+
except HfHubHTTPError:
|
49 |
continue
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
51 |
|
52 |
+
def update_collections(df: DataFrame):
|
53 |
+
"""Update collections by filtering and adding the best models."""
|
54 |
+
collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=H4_TOKEN)
|
55 |
+
cur_best_models = []
|
56 |
+
|
57 |
+
for model_type in ModelType:
|
58 |
+
if not model_type.value.name:
|
59 |
+
continue
|
60 |
+
for size, interval in intervals.items():
|
61 |
+
filtered_df = _filter_by_type_and_size(df, model_type, interval)
|
62 |
best_models = list(
|
63 |
+
filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.dummy.name][:10]
|
64 |
)
|
65 |
+
print(model_type.value.symbol, size, best_models)
|
66 |
+
_add_models_to_collection(collection, best_models, model_type, size)
|
67 |
+
cur_best_models.extend(best_models)
|
68 |
|
69 |
+
# Cleanup
|
70 |
+
existing_models = {item.item_id for item in collection.items}
|
71 |
+
to_remove = existing_models - set(cur_best_models)
|
72 |
+
for item_id in to_remove:
|
73 |
+
try:
|
74 |
+
delete_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_id, token=H4_TOKEN)
|
75 |
+
except HfHubHTTPError:
|
76 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|