Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
-
import
|
4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
from easyocr import Reader
|
6 |
|
|
|
|
|
|
|
7 |
# Load the OCR model and text explanation model
|
8 |
ocr_reader = Reader(['en'])
|
9 |
|
@@ -37,11 +39,15 @@ uploaded_file = st.file_uploader("Upload an image:")
|
|
37 |
if uploaded_file is not None:
|
38 |
image = Image.open(uploaded_file)
|
39 |
ocr_results = extract_text(image)
|
|
|
40 |
explanation = explain_text(ocr_results, text_generator, text_tokenizer)
|
41 |
|
42 |
st.markdown("**Extracted text:**")
|
43 |
st.markdown(" ".join([res[1] for res in ocr_results]))
|
44 |
|
|
|
|
|
|
|
45 |
st.markdown("**Explanation:**")
|
46 |
st.markdown(explanation)
|
47 |
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
4 |
from easyocr import Reader
|
5 |
|
6 |
+
# Initialize the image-to-text model
|
7 |
+
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
8 |
+
|
9 |
# Load the OCR model and text explanation model
|
10 |
ocr_reader = Reader(['en'])
|
11 |
|
|
|
39 |
if uploaded_file is not None:
|
40 |
image = Image.open(uploaded_file)
|
41 |
ocr_results = extract_text(image)
|
42 |
+
image_caption = image_to_text(image) # Use the image-to-text model
|
43 |
explanation = explain_text(ocr_results, text_generator, text_tokenizer)
|
44 |
|
45 |
st.markdown("**Extracted text:**")
|
46 |
st.markdown(" ".join([res[1] for res in ocr_results]))
|
47 |
|
48 |
+
st.markdown("**Image Caption:**")
|
49 |
+
st.markdown(image_caption[0]['caption']) # Display the image caption
|
50 |
+
|
51 |
st.markdown("**Explanation:**")
|
52 |
st.markdown(explanation)
|
53 |
|