import streamlit as st | |
from transformers import pipeline | |
# Create a text2text-generation pipeline with the "google/flan-t5-base" model | |
pipe = pipeline("text2text-generation", model="google/flan-t5-base") | |
st.title("Question-Answer Generator") | |
user_question = st.text_input("Ask a question:") | |
if st.button("Generate Answer"): | |
if user_question: | |
# Use the T5 model to generate a more precise answer | |
answer = pipe(user_question, max_length=100, do_sample=False)[0]["generated_text"] | |
st.write("Answer:") | |
st.write(answer) | |
else: | |
st.warning("Please enter a question.") | |