mkthoma commited on
Commit
135525d
·
1 Parent(s): 3e44d64

code update

Browse files
Files changed (1) hide show
  1. app.py +20 -2
app.py CHANGED
@@ -1,5 +1,5 @@
1
  from base64 import b64encode
2
-
3
  import numpy as np
4
  import torch
5
  from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
@@ -247,7 +247,7 @@ def image_generator(prompt = "dog", loss_function=None):
247
  seed_values = [8,16,50,80,128]
248
  height = 512 # default height of Stable Diffusion
249
  width = 512 # default width of Stable Diffusion
250
- num_inference_steps = 10 # Number of denoising steps
251
  guidance_scale = 7.5 # Scale for classifier-free guidance
252
  num_styles = len(style_files)
253
 
@@ -269,3 +269,21 @@ def image_generator(prompt = "dog", loss_function=None):
269
 
270
  return display_images_in_rows(generated_sd_images, titles)
271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  from base64 import b64encode
2
+ import gradio as gr
3
  import numpy as np
4
  import torch
5
  from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
 
247
  seed_values = [8,16,50,80,128]
248
  height = 512 # default height of Stable Diffusion
249
  width = 512 # default width of Stable Diffusion
250
+ num_inference_steps = 1 # Number of denoising steps
251
  guidance_scale = 7.5 # Scale for classifier-free guidance
252
  num_styles = len(style_files)
253
 
 
269
 
270
  return display_images_in_rows(generated_sd_images, titles)
271
 
272
+
273
+ # Create a wrapper function for show_misclassified_images()
274
+ def image_generator_wrapper(prompt = "dog", loss_function=None):
275
+ prompt = string(prompt)
276
+ if loss_function == "Yes":
277
+ loss_function = vibrance_loss
278
+ else:
279
+ loss_function = None
280
+
281
+ return image_generator(prompt, loss_function)
282
+
283
+ description = "Generate an image with a prompt and apply loss if you wish to"
284
+
285
+ demo = gr.Interface(image_generator_wrapper,
286
+ inputs=[gr.Textbox(label="Enter prompt for generating", type="str", default="dog sitting on a bench"),
287
+ gr.Radio(["Yes", "No"], value="No" , label="Apply vibrance loss")],
288
+ outputs=gr.Plot(), title = "Stable Diffusion", description=description)
289
+ demo.launch()