from base64 import b64encode import gradio as gr import numpy as np import torch from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel from matplotlib import pyplot as plt from pathlib import Path from PIL import Image from torch import autocast from torchvision import transforms as tfms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer, logging import os import cv2 import torchvision.transforms as T torch.manual_seed(1) logging.set_verbosity_error() torch_device = "cuda" if torch.cuda.is_available() else "cpu" # Load the autoencoder vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder='vae') # Load tokenizer and text encoder to tokenize and encode the text tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") # Unet model for generating latents unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder='unet') # Noise scheduler scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) # Move everything to GPU vae = vae.to(torch_device) text_encoder = text_encoder.to(torch_device) unet = unet.to(torch_device) style_files = ['stable_diffusion/learned_embeddings/arcane-style-jv.bin', 'stable_diffusion/learned_embeddings/birb-style.bin', 'stable_diffusion/learned_embeddings/dr-strange.bin', 'stable_diffusion/learned_embeddings/midjourney-style.bin', 'stable_diffusion/learned_embeddings/oil_style.bin'] images_without_loss = [] images_with_loss = [] seed_values = [8,16,50,80,128] height = 512 # default height of Stable Diffusion width = 512 # default width of Stable Diffusion num_inference_steps = 5 # Number of denoising steps guidance_scale = 7.5 # Scale for classifier-free guidance num_styles = len(style_files) # Prep Scheduler def set_timesteps(scheduler, num_inference_steps): scheduler.set_timesteps(num_inference_steps) scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925 def get_output_embeds(input_embeddings): # CLIP's text model uses causal mask, so we prepare it here: bsz, seq_len = input_embeddings.shape[:2] causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) # Getting the output embeddings involves calling the model with passing output_hidden_states=True # so that it doesn't just return the pooled final predictions: encoder_outputs = text_encoder.text_model.encoder( inputs_embeds=input_embeddings, attention_mask=None, # We aren't using an attention mask so that can be None causal_attention_mask=causal_attention_mask.to(torch_device), output_attentions=None, output_hidden_states=True, # We want the output embs not the final output return_dict=None, ) # We're interested in the output hidden state only output = encoder_outputs[0] # There is a final layer norm we need to pass these through output = text_encoder.text_model.final_layer_norm(output) # And now they're ready! return output def get_style_embeddings(style_file): style_embed = torch.load(style_file) style_name = list(style_embed.keys())[0] return style_embed[style_name] import torch def vibrance_loss(image): # Calculate the standard deviation of color channels std_dev = torch.std(image, dim=(2, 3)) # Compute standard deviation over height and width # Calculate the mean standard deviation across the batch mean_std_dev = torch.mean(std_dev) # You can adjust a scale factor to control the strength of vibrance regularization scale_factor = 100.0 # Calculate the vibrance loss loss = -scale_factor * mean_std_dev return loss from torchvision.transforms import ToTensor def pil_to_latent(input_im): # Single image -> single latent in a batch (so size 1, 4, 64, 64) with torch.no_grad(): latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling return 0.18215 * latent.latent_dist.sample() def latents_to_pil(latents): # bath of latents -> list of images latents = (1 / 0.18215) * latents with torch.no_grad(): image = vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.detach().cpu().permute(0, 2, 3, 1).numpy() images = (image * 255).round().astype("uint8") pil_images = [Image.fromarray(image) for image in images] return pil_images def additional_guidance(latents, scheduler, noise_pred, t, sigma, custom_loss_fn): #### ADDITIONAL GUIDANCE ### # Requires grad on the latents latents = latents.detach().requires_grad_() # Get the predicted x0: latents_x0 = latents - sigma * noise_pred #print(f"latents: {latents.shape}, noise_pred:{noise_pred.shape}") #latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample # Decode to image space denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1) # Calculate loss loss = custom_loss_fn(denoised_images) # Get gradient cond_grad = torch.autograd.grad(loss, latents, allow_unused=False)[0] # Modify the latents based on this gradient latents = latents.detach() - cond_grad * sigma**2 return latents, loss def generate_with_embs(text_embeddings, max_length, random_seed, loss_fn = None): generator = torch.manual_seed(random_seed) # Seed generator to create the inital latent noise batch_size = 1 uncond_input = tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" ) with torch.no_grad(): uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # Prep Scheduler set_timesteps(scheduler, num_inference_steps) # Prep latents latents = torch.randn( (batch_size, unet.in_channels, height // 8, width // 8), generator=generator, ) latents = latents.to(torch_device) latents = latents * scheduler.init_noise_sigma # Loop for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. latent_model_input = torch.cat([latents] * 2) sigma = scheduler.sigmas[i] latent_model_input = scheduler.scale_model_input(latent_model_input, t) # predict the noise residual with torch.no_grad(): noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] # perform guidance noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) if loss_fn is not None: if i%2 == 0: latents, custom_loss = additional_guidance(latents, scheduler, noise_pred, t, sigma, loss_fn) # compute the previous noisy sample x_t -> x_t-1 latents = scheduler.step(noise_pred, t, latents).prev_sample return latents_to_pil(latents)[0] def generate_images(prompt, style_num=None, random_seed=41, custom_loss_fn = None): eos_pos = len(prompt.split())+1 style_token_embedding = None if style_num: style_token_embedding = get_style_embeddings(style_files[style_num]) # tokenize text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") max_length = text_input.input_ids.shape[-1] input_ids = text_input.input_ids.to(torch_device) # get token embeddings token_emb_layer = text_encoder.text_model.embeddings.token_embedding token_embeddings = token_emb_layer(input_ids) # Append style token towards the end of the sentence embeddings if style_token_embedding is not None: token_embeddings[-1, eos_pos, :] = style_token_embedding # combine with pos embs pos_emb_layer = text_encoder.text_model.embeddings.position_embedding position_ids = text_encoder.text_model.embeddings.position_ids[:, :77] position_embeddings = pos_emb_layer(position_ids) input_embeddings = token_embeddings + position_embeddings # Feed through to get final output embs modified_output_embeddings = get_output_embeds(input_embeddings) # And generate an image with this: generated_image = generate_with_embs(modified_output_embeddings, max_length, random_seed, custom_loss_fn) return generated_image import matplotlib.pyplot as plt def display_images_in_rows(images_with_titles, titles): num_images = len(images_with_titles) rows = 5 # Display 5 rows always columns = 1 if num_images == 5 else 2 # Use 1 column if there are 5 images, otherwise 2 columns fig, axes = plt.subplots(rows, columns + 1, figsize=(15, 5 * rows)) # Add an extra column for titles for r in range(rows): # Add the title on the extreme left in the middle of each picture axes[r, 0].text(0.5, 0.5, titles[r], ha='center', va='center') axes[r, 0].axis('off') # Add "Without Loss" label above the first column and "With Loss" label above the second column (if applicable) if columns == 2: axes[r, 1].set_title("Without Loss", pad=10) axes[r, 2].set_title("With Loss", pad=10) for c in range(1, columns + 1): index = r * columns + c - 1 if index < num_images: image, _ = images_with_titles[index] axes[r, c].imshow(image) axes[r, c].axis('off') return fig # plt.show() def image_generator(prompt = "dog", loss_function=None): images_without_loss = [] images_with_loss = [] if loss_function == "Yes": loss_function = vibrance_loss else: loss_function = None for i in range(num_styles): generated_img = generate_images(prompt,style_num = i,random_seed = seed_values[i],custom_loss_fn = None) images_without_loss.append(generated_img) if loss_function: generated_img = generate_images(prompt,style_num = i,random_seed = seed_values[i],custom_loss_fn = loss_function) images_with_loss.append(generated_img) generated_sd_images = [] titles = ["Arcane Style", "Birb Style", "Dr Strange Style", "Midjourney Style", "Oil Style"] for i in range(len(titles)): generated_sd_images.append((images_without_loss[i], titles[i])) if images_with_loss != []: generated_sd_images.append((images_with_loss[i], titles[i])) return display_images_in_rows(generated_sd_images, titles) description = "Generate an image with a prompt and apply vibrance loss if you wish to. Note that the app is hosted on a cpu and it takes atleast 15 minutes for generating images without loss. Please feel free to clone the space and use it with a GPU after increase the inference steps to more than 10 for better results" demo = gr.Interface(image_generator, inputs=[gr.Textbox(label="Enter prompt for generation", type="text", value="dog sitting on a bench"), gr.Radio(["Yes", "No"], value="No" , label="Apply vibrance loss")], outputs=gr.Plot(label="Generated Images"), title = "Stable Diffusion using Textual Inversion", description=description) demo.launch()