import lightning.pytorch as pl from . import config from .utils import (check_class_accuracy,get_evaluation_bboxes,mean_average_precision,plot_couple_examples) from lightning.pytorch.callbacks import Callback class plot_examples_callback(Callback): def __init__(self, epoch_interval: int = 5) -> None: super().__init__() self.epoch_interval = epoch_interval def on_train_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule) -> None: if (trainer.current_epoch + 1) % self.epoch_interval == 0: plot_couple_examples( model=pl_module, loader=pl_module.train_dataloader(), thresh=0.6, iou_thresh=0.5, anchors=pl_module.scaled_anchors, ) class class_accuracy_callback(pl.Callback): def __init__(self, train_epoch_interval: int = 1, test_epoch_interval: int = 10) -> None: super().__init__() self.train_epoch_interval = train_epoch_interval self.test_epoch_interval = test_epoch_interval def on_train_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule) -> None: if (trainer.current_epoch + 1) % self.train_epoch_interval == 0: class_acc, no_obj_acc, obj_acc = check_class_accuracy(model=pl_module, loader=pl_module.train_dataloader(), threshold=config.CONF_THRESHOLD) class_acc = round(class_acc.item(),2) no_obj_acc = round(no_obj_acc.item(),2) obj_acc = round(obj_acc.item(),2) pl_module.log_dict( { "train_class_acc": class_acc, "train_no_obj_acc": no_obj_acc, "train_obj_acc": obj_acc, }, logger=True, ) print(f"Epoch: {trainer.current_epoch + 1}") print("Train Metrics") print(f"Loss: {trainer.callback_metrics['train_loss_epoch']}") print(f"Class Accuracy: {class_acc:2f}%") print(f"No Object Accuracy: {no_obj_acc:2f}%") print(f"Object Accuracy: {obj_acc:2f}%") if (trainer.current_epoch + 1) % self.test_epoch_interval == 0: class_acc, no_obj_acc, obj_acc = check_class_accuracy(model=pl_module, loader=pl_module.test_dataloader(), threshold=config.CONF_THRESHOLD) class_acc = round(class_acc.item(),2) no_obj_acc = round(no_obj_acc.item(),2) obj_acc = round(obj_acc.item(),2) pl_module.log_dict( { "test_class_acc": class_acc, "test_no_obj_acc": no_obj_acc, "test_obj_acc": obj_acc, }, logger=True, ) print("Test Metrics") print(f"Class Accuracy: {class_acc:2f}%") print(f"No Object Accuracy: {no_obj_acc:2f}%") print(f"Object Accuracy: {obj_acc:2f}%") class map_callback(pl.Callback): def __init__(self, epoch_interval: int = 10) -> None: super().__init__() self.epoch_interval = epoch_interval def on_train_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule) -> None: if (trainer.current_epoch + 1) % self.epoch_interval == 0: pred_boxes, true_boxes = get_evaluation_bboxes(loader=pl_module.test_dataloader(), model=pl_module, iou_threshold=config.NMS_IOU_THRESH, anchors=config.ANCHORS, threshold=config.CONF_THRESHOLD, device=config.DEVICE,) map_val = mean_average_precision(pred_boxes=pred_boxes, true_boxes=true_boxes, iou_threshold=config.MAP_IOU_THRESH, box_format="midpoint", num_classes=config.NUM_CLASSES) print("MAP: ", map_val.item()) pl_module.log("MAP",map_val.item(),logger=True) pl_module.train()