from typing import List import torch import numpy as np import cv2 import random from pytorch_grad_cam.base_cam import BaseCAM from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget # Bounding box predicted on image def draw_predictions(image: np.ndarray, boxes: List[List], class_labels: List[str]) -> np.ndarray: colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels] im = np.array(image) height, width, _ = im.shape bbox_thick = int(0.6 * (height + width) / 600) # Create a Rectangle patch for box in boxes: assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height" class_pred = box[0] conf = box[1] box = box[2:] upper_left_x = box[0] - box[2] / 2 upper_left_y = box[1] - box[3] / 2 x1 = int(upper_left_x * width) y1 = int(upper_left_y * height) x2 = x1 + int(box[2] * width) y2 = y1 + int(box[3] * height) cv2.rectangle( image, (x1, y1), (x2, y2), color=colors[int(class_pred)], thickness=bbox_thick ) text = f"{class_labels[int(class_pred)]}: {conf:.2f}" t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0] c3 = (x1 + t_size[0], y1 - t_size[1] - 3) cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1) cv2.putText( image, text, (x1, y1 - 2), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), bbox_thick // 2, lineType=cv2.LINE_AA, ) return image # GradCAM outputs class YoloCAM(BaseCAM): def __init__(self, model, target_layers, use_cuda=False, reshape_transform=None): super(YoloCAM, self).__init__(model, target_layers, use_cuda, reshape_transform, uses_gradients=False) def forward(self, input_tensor: torch.Tensor, scaled_anchors: torch.Tensor, targets: List[torch.nn.Module], eigen_smooth: bool = False) -> np.ndarray: if self.cuda: input_tensor = input_tensor.cuda() if self.compute_input_gradient: input_tensor = torch.autograd.Variable(input_tensor, requires_grad=True) outputs = self.activations_and_grads(input_tensor) if targets is None: bboxes = [[] for _ in range(1)] for i in range(3): batch_size, A, S, _, _ = outputs[i].shape anchor = scaled_anchors[i] boxes_scale_i = cells_to_bboxes( outputs[i], anchor, S=S, is_preds=True ) for idx, (box) in enumerate(boxes_scale_i): bboxes[idx] += box nms_boxes = non_max_suppression( bboxes[0], iou_threshold=0.5, threshold=0.4, box_format="midpoint", ) # target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1) target_categories = [box[0] for box in nms_boxes] targets = [ClassifierOutputTarget( category) for category in target_categories] if self.uses_gradients: self.model.zero_grad() loss = sum([target(output) for target, output in zip(targets, outputs)]) loss.backward(retain_graph=True) # In most of the saliency attribution papers, the saliency is # computed with a single target layer. # Commonly it is the last convolutional layer. # Here we support passing a list with multiple target layers. # It will compute the saliency image for every image, # and then aggregate them (with a default mean aggregation). # This gives you more flexibility in case you just want to # use all conv layers for example, all Batchnorm layers, # or something else. cam_per_layer = self.compute_cam_per_layer(input_tensor, targets, eigen_smooth) return self.aggregate_multi_layers(cam_per_layer) def get_cam_image(self, input_tensor, target_layer, target_category, activations, grads, eigen_smooth): return get_2d_projection(activations)