from . import config import matplotlib.pyplot as plt import matplotlib.patches as patches import numpy as np import os import random import torch from collections import Counter from torch.utils.data import DataLoader from tqdm.notebook import tqdm def iou_width_height(boxes1, boxes2): """ Parameters: boxes1 (tensor): width and height of the first bounding boxes boxes2 (tensor): width and height of the second bounding boxes Returns: tensor: Intersection over union of the corresponding boxes """ intersection = torch.min(boxes1[..., 0], boxes2[..., 0]) * torch.min( boxes1[..., 1], boxes2[..., 1] ) union = ( boxes1[..., 0] * boxes1[..., 1] + boxes2[..., 0] * boxes2[..., 1] - intersection ) return intersection / union def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"): """ Video explanation of this function: https://youtu.be/XXYG5ZWtjj0 This function calculates intersection over union (iou) given pred boxes and target boxes. Parameters: boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4) boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4) box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2) Returns: tensor: Intersection over union for all examples """ if box_format == "midpoint": box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2 box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2 box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2 box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2 box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2 box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2 box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2 box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2 if box_format == "corners": box1_x1 = boxes_preds[..., 0:1] box1_y1 = boxes_preds[..., 1:2] box1_x2 = boxes_preds[..., 2:3] box1_y2 = boxes_preds[..., 3:4] box2_x1 = boxes_labels[..., 0:1] box2_y1 = boxes_labels[..., 1:2] box2_x2 = boxes_labels[..., 2:3] box2_y2 = boxes_labels[..., 3:4] x1 = torch.max(box1_x1, box2_x1) y1 = torch.max(box1_y1, box2_y1) x2 = torch.min(box1_x2, box2_x2) y2 = torch.min(box1_y2, box2_y2) intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0) box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1)) box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1)) return intersection / (box1_area + box2_area - intersection + 1e-6) def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"): """ Video explanation of this function: https://youtu.be/YDkjWEN8jNA Does Non Max Suppression given bboxes Parameters: bboxes (list): list of lists containing all bboxes with each bboxes specified as [class_pred, prob_score, x1, y1, x2, y2] iou_threshold (float): threshold where predicted bboxes is correct threshold (float): threshold to remove predicted bboxes (independent of IoU) box_format (str): "midpoint" or "corners" used to specify bboxes Returns: list: bboxes after performing NMS given a specific IoU threshold """ assert type(bboxes) == list bboxes = [box for box in bboxes if box[1] > threshold] bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True) bboxes_after_nms = [] while bboxes: chosen_box = bboxes.pop(0) bboxes = [ box for box in bboxes if box[0] != chosen_box[0] or intersection_over_union( torch.tensor(chosen_box[2:]), torch.tensor(box[2:]), box_format=box_format, ) < iou_threshold ] bboxes_after_nms.append(chosen_box) return bboxes_after_nms def mean_average_precision( pred_boxes, true_boxes, iou_threshold=0.5, box_format="midpoint", num_classes=20 ): """ Video explanation of this function: https://youtu.be/FppOzcDvaDI This function calculates mean average precision (mAP) Parameters: pred_boxes (list): list of lists containing all bboxes with each bboxes specified as [train_idx, class_prediction, prob_score, x1, y1, x2, y2] true_boxes (list): Similar as pred_boxes except all the correct ones iou_threshold (float): threshold where predicted bboxes is correct box_format (str): "midpoint" or "corners" used to specify bboxes num_classes (int): number of classes Returns: float: mAP value across all classes given a specific IoU threshold """ # list storing all AP for respective classes average_precisions = [] # used for numerical stability later on epsilon = 1e-6 for c in range(num_classes): detections = [] ground_truths = [] # Go through all predictions and targets, # and only add the ones that belong to the # current class c for detection in pred_boxes: if detection[1] == c: detections.append(detection) for true_box in true_boxes: if true_box[1] == c: ground_truths.append(true_box) # find the amount of bboxes for each training example # Counter here finds how many ground truth bboxes we get # for each training example, so let's say img 0 has 3, # img 1 has 5 then we will obtain a dictionary with: # amount_bboxes = {0:3, 1:5} amount_bboxes = Counter([gt[0] for gt in ground_truths]) # We then go through each key, val in this dictionary # and convert to the following (w.r.t same example): # ammount_bboxes = {0:torch.tensor[0,0,0], 1:torch.tensor[0,0,0,0,0]} for key, val in amount_bboxes.items(): amount_bboxes[key] = torch.zeros(val) # sort by box probabilities which is index 2 detections.sort(key=lambda x: x[2], reverse=True) TP = torch.zeros((len(detections))) FP = torch.zeros((len(detections))) total_true_bboxes = len(ground_truths) # If none exists for this class then we can safely skip if total_true_bboxes == 0: continue for detection_idx, detection in enumerate(detections): # Only take out the ground_truths that have the same # training idx as detection ground_truth_img = [ bbox for bbox in ground_truths if bbox[0] == detection[0] ] num_gts = len(ground_truth_img) best_iou = 0 for idx, gt in enumerate(ground_truth_img): iou = intersection_over_union( torch.tensor(detection[3:]), torch.tensor(gt[3:]), box_format=box_format, ) if iou > best_iou: best_iou = iou best_gt_idx = idx if best_iou > iou_threshold: # only detect ground truth detection once if amount_bboxes[detection[0]][best_gt_idx] == 0: # true positive and add this bounding box to seen TP[detection_idx] = 1 amount_bboxes[detection[0]][best_gt_idx] = 1 else: FP[detection_idx] = 1 # if IOU is lower then the detection is a false positive else: FP[detection_idx] = 1 TP_cumsum = torch.cumsum(TP, dim=0) FP_cumsum = torch.cumsum(FP, dim=0) recalls = TP_cumsum / (total_true_bboxes + epsilon) precisions = TP_cumsum / (TP_cumsum + FP_cumsum + epsilon) precisions = torch.cat((torch.tensor([1]), precisions)) recalls = torch.cat((torch.tensor([0]), recalls)) # torch.trapz for numerical integration average_precisions.append(torch.trapz(precisions, recalls)) return sum(average_precisions) / len(average_precisions) def plot_image(image, boxes): """Plots predicted bounding boxes on the image""" cmap = plt.get_cmap("tab20b") class_labels = config.COCO_LABELS if config.DATASET=='COCO' else config.PASCAL_CLASSES colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))] im = np.array(image) height, width, _ = im.shape # Create figure and axes fig, ax = plt.subplots(1) # Display the image ax.imshow(im) # box[0] is x midpoint, box[2] is width # box[1] is y midpoint, box[3] is height # Create a Rectangle patch for box in boxes: assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height" class_pred = box[0] box = box[2:] upper_left_x = box[0] - box[2] / 2 upper_left_y = box[1] - box[3] / 2 rect = patches.Rectangle( (upper_left_x * width, upper_left_y * height), box[2] * width, box[3] * height, linewidth=2, edgecolor=colors[int(class_pred)], facecolor="none", ) # Add the patch to the Axes ax.add_patch(rect) plt.text( upper_left_x * width, upper_left_y * height, s=class_labels[int(class_pred)], color="white", verticalalignment="top", bbox={"color": colors[int(class_pred)], "pad": 0}, ) plt.show() def get_evaluation_bboxes( loader, model, iou_threshold, anchors, threshold, box_format="midpoint", device="cuda", ): # make sure model is in eval before get bboxes model.eval() train_idx = 0 all_pred_boxes = [] all_true_boxes = [] for batch_idx, (x, labels) in enumerate(tqdm(loader)): x = x.to(device) with torch.no_grad(): predictions = model(x) batch_size = x.shape[0] bboxes = [[] for _ in range(batch_size)] for i in range(3): S = predictions[i].shape[2] anchor = torch.tensor([*anchors[i]]).to(device) * S boxes_scale_i = cells_to_bboxes( predictions[i], anchor, S=S, is_preds=True ) for idx, (box) in enumerate(boxes_scale_i): bboxes[idx] += box # we just want one bbox for each label, not one for each scale true_bboxes = cells_to_bboxes( labels[2], anchor, S=S, is_preds=False ) for idx in range(batch_size): nms_boxes = non_max_suppression( bboxes[idx], iou_threshold=iou_threshold, threshold=threshold, box_format=box_format, ) for nms_box in nms_boxes: all_pred_boxes.append([train_idx] + nms_box) for box in true_bboxes[idx]: if box[1] > threshold: all_true_boxes.append([train_idx] + box) train_idx += 1 model.train() return all_pred_boxes, all_true_boxes def cells_to_bboxes(predictions, anchors, S, is_preds=True): """ Scales the predictions coming from the model to be relative to the entire image such that they for example later can be plotted or. INPUT: predictions: tensor of size (N, 3, S, S, num_classes+5) anchors: the anchors used for the predictions S: the number of cells the image is divided in on the width (and height) is_preds: whether the input is predictions or the true bounding boxes OUTPUT: converted_bboxes: the converted boxes of sizes (N, num_anchors, S, S, 1+5) with class index, object score, bounding box coordinates """ BATCH_SIZE = predictions.shape[0] num_anchors = len(anchors) box_predictions = predictions[..., 1:5] if is_preds: anchors = anchors.reshape(1, len(anchors), 1, 1, 2) box_predictions[..., 0:2] = torch.sigmoid(box_predictions[..., 0:2]) box_predictions[..., 2:] = torch.exp(box_predictions[..., 2:]) * anchors scores = torch.sigmoid(predictions[..., 0:1]) best_class = torch.argmax(predictions[..., 5:], dim=-1).unsqueeze(-1) else: scores = predictions[..., 0:1] best_class = predictions[..., 5:6] cell_indices = ( torch.arange(S) .repeat(predictions.shape[0], 3, S, 1) .unsqueeze(-1) .to(predictions.device) ) x = 1 / S * (box_predictions[..., 0:1] + cell_indices) y = 1 / S * (box_predictions[..., 1:2] + cell_indices.permute(0, 1, 3, 2, 4)) w_h = 1 / S * box_predictions[..., 2:4] converted_bboxes = torch.cat((best_class, scores, x, y, w_h), dim=-1).reshape(BATCH_SIZE, num_anchors * S * S, 6) return converted_bboxes.tolist() def check_class_accuracy(model, loader, threshold): # model.eval() tot_class_preds, correct_class = 0, 0 tot_noobj, correct_noobj = 0, 0 tot_obj, correct_obj = 0, 0 for idx, (x, y) in enumerate(tqdm(loader)): x = x.to(config.DEVICE) with torch.no_grad(): out = model(x) for i in range(3): y[i] = y[i].to(config.DEVICE) obj = y[i][..., 0] == 1 # in paper this is Iobj_i noobj = y[i][..., 0] == 0 # in paper this is Iobj_i correct_class += torch.sum( torch.argmax(out[i][..., 5:][obj], dim=-1) == y[i][..., 5][obj] ) tot_class_preds += torch.sum(obj) obj_preds = torch.sigmoid(out[i][..., 0]) > threshold correct_obj += torch.sum(obj_preds[obj] == y[i][..., 0][obj]) tot_obj += torch.sum(obj) correct_noobj += torch.sum(obj_preds[noobj] == y[i][..., 0][noobj]) tot_noobj += torch.sum(noobj) # print(f"Class accuracy is: {(correct_class/(tot_class_preds+1e-16))*100:2f}%") # print(f"No obj accuracy is: {(correct_noobj/(tot_noobj+1e-16))*100:2f}%") # print(f"Obj accuracy is: {(correct_obj/(tot_obj+1e-16))*100:2f}%") # model.train() class_acc = (correct_class / (tot_class_preds + 1e-16)) * 100 no_obj_acc = (correct_noobj / (tot_noobj + 1e-16)) * 100 obj_acc = (correct_obj / (tot_obj + 1e-16)) * 100 return class_acc, no_obj_acc, obj_acc def get_mean_std(loader): # var[X] = E[X**2] - E[X]**2 channels_sum, channels_sqrd_sum, num_batches = 0, 0, 0 for data, _ in tqdm(loader): channels_sum += torch.mean(data, dim=[0, 2, 3]) channels_sqrd_sum += torch.mean(data ** 2, dim=[0, 2, 3]) num_batches += 1 mean = channels_sum / num_batches std = (channels_sqrd_sum / num_batches - mean ** 2) ** 0.5 return mean, std def save_checkpoint(model, optimizer, filename="my_checkpoint.pth.tar"): print("=> Saving checkpoint") checkpoint = { "state_dict": model.state_dict(), "optimizer": optimizer.state_dict(), } torch.save(checkpoint, filename) def load_checkpoint(checkpoint_file, model, optimizer, lr): print("=> Loading checkpoint") checkpoint = torch.load(checkpoint_file, map_location=config.DEVICE) model.load_state_dict(checkpoint["state_dict"]) optimizer.load_state_dict(checkpoint["optimizer"]) # If we don't do this then it will just have learning rate of old checkpoint # and it will lead to many hours of debugging \: for param_group in optimizer.param_groups: param_group["lr"] = lr def get_loaders(train_csv_path, test_csv_path): from .dataset import YOLOTrainDataset, YOLOTestDataset IMAGE_SIZE = config.IMAGE_SIZE train_dataset = YOLOTrainDataset( train_csv_path, transform=config.train_transforms, S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8], img_dir=config.IMG_DIR, label_dir=config.LABEL_DIR, anchors=config.ANCHORS, ) test_dataset = YOLOTestDataset( test_csv_path, transform=config.test_transforms, S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8], img_dir=config.IMG_DIR, label_dir=config.LABEL_DIR, anchors=config.ANCHORS, ) train_loader = DataLoader( dataset=train_dataset, batch_size=config.BATCH_SIZE, num_workers=config.NUM_WORKERS, pin_memory=config.PIN_MEMORY, shuffle=True, drop_last=False, ) test_loader = DataLoader( dataset=test_dataset, batch_size=config.BATCH_SIZE, num_workers=config.NUM_WORKERS, pin_memory=config.PIN_MEMORY, shuffle=False, drop_last=False, ) train_eval_dataset = YOLOTestDataset( train_csv_path, transform=config.test_transforms, S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8], img_dir=config.IMG_DIR, label_dir=config.LABEL_DIR, anchors=config.ANCHORS, ) train_eval_loader = DataLoader( dataset=train_eval_dataset, batch_size=config.BATCH_SIZE, num_workers=config.NUM_WORKERS, pin_memory=config.PIN_MEMORY, shuffle=False, drop_last=False, ) return train_loader, test_loader, train_eval_loader def plot_couple_examples(model, loader, thresh, iou_thresh, anchors): model.eval() x, y = next(iter(loader)) x = x.to("cuda") with torch.no_grad(): out = model(x) bboxes = [[] for _ in range(x.shape[0])] for i in range(3): batch_size, A, S, _, _ = out[i].shape anchor = anchors[i] boxes_scale_i = cells_to_bboxes( out[i], anchor, S=S, is_preds=True ) for idx, (box) in enumerate(boxes_scale_i): bboxes[idx] += box model.train() for i in range(batch_size//4): nms_boxes = non_max_suppression( bboxes[i], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint", ) plot_image(x[i].permute(1,2,0).detach().cpu(), nms_boxes) # def seed_everything(seed=42): # os.environ['PYTHONHASHSEED'] = str(seed) # random.seed(seed) # np.random.seed(seed) # torch.manual_seed(seed) # torch.cuda.manual_seed(seed) # torch.cuda.manual_seed_all(seed) # torch.backends.cudnn.deterministic = True # torch.backends.cudnn.benchmark = False def clip_coords(boxes, img_shape): # Clip bounding xyxy bounding boxes to image shape (height, width) boxes[:, 0].clamp_(0, img_shape[1]) # x1 boxes[:, 1].clamp_(0, img_shape[0]) # y1 boxes[:, 2].clamp_(0, img_shape[1]) # x2 boxes[:, 3].clamp_(0, img_shape[0]) # y2 def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y return y def xyn2xy(x, w=640, h=640, padw=0, padh=0): # Convert normalized segments into pixel segments, shape (n,2) y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[..., 0] = w * x[..., 0] + padw # top left x y[..., 1] = h * x[..., 1] + padh # top left y return y def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0): # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right if clip: clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center y[..., 2] = (x[..., 2] - x[..., 0]) / w # width y[..., 3] = (x[..., 3] - x[..., 1]) / h # height return y def clip_boxes(boxes, shape): # Clip boxes (xyxy) to image shape (height, width) if isinstance(boxes, torch.Tensor): # faster individually boxes[..., 0].clamp_(0, shape[1]) # x1 boxes[..., 1].clamp_(0, shape[0]) # y1 boxes[..., 2].clamp_(0, shape[1]) # x2 boxes[..., 3].clamp_(0, shape[0]) # y2 else: # np.array (faster grouped) boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2 boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2