Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ultralytics import YOLO
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from utils.tools_gradio import fast_process
|
5 |
+
from utils.tools import format_results, box_prompt, point_prompt, text_prompt
|
6 |
+
from PIL import ImageDraw
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# Load the pre-trained model
|
10 |
+
model = YOLO('./weights/FastSAM.pt')
|
11 |
+
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
# Description
|
15 |
+
title = "<center><strong><font size='10'> Fast Segment Anything </font></strong></center>"
|
16 |
+
|
17 |
+
|
18 |
+
examples = [["examples/sa_8776.jpg"], ["examples/sa_414.jpg"], ["examples/sa_1309.jpg"], ["examples/sa_11025.jpg"],
|
19 |
+
["examples/sa_561.jpg"], ["examples/sa_192.jpg"], ["examples/sa_10039.jpg"], ["examples/sa_862.jpg"]]
|
20 |
+
|
21 |
+
default_example = examples[0]
|
22 |
+
|
23 |
+
def segment_everything(
|
24 |
+
input,
|
25 |
+
input_size=1024,
|
26 |
+
iou_threshold=0.7,
|
27 |
+
conf_threshold=0.25,
|
28 |
+
better_quality=False,
|
29 |
+
withContours=True,
|
30 |
+
use_retina=True,
|
31 |
+
text="",
|
32 |
+
wider=False,
|
33 |
+
mask_random_color=True,
|
34 |
+
):
|
35 |
+
input_size = int(input_size)
|
36 |
+
w, h = input.size
|
37 |
+
scale = input_size / max(w, h)
|
38 |
+
new_w = int(w * scale)
|
39 |
+
new_h = int(h * scale)
|
40 |
+
input = input.resize((new_w, new_h))
|
41 |
+
|
42 |
+
results = model(input,
|
43 |
+
device=device,
|
44 |
+
retina_masks=True,
|
45 |
+
iou=iou_threshold,
|
46 |
+
conf=conf_threshold,
|
47 |
+
imgsz=input_size,)
|
48 |
+
|
49 |
+
if len(text) > 0:
|
50 |
+
results = format_results(results[0], 0)
|
51 |
+
annotations, _ = text_prompt(results, text, input, device=device, wider=wider)
|
52 |
+
annotations = np.array([annotations])
|
53 |
+
else:
|
54 |
+
annotations = results[0].masks.data
|
55 |
+
|
56 |
+
fig = fast_process(annotations=annotations,
|
57 |
+
image=input,
|
58 |
+
device=device,
|
59 |
+
scale=(1024 // input_size),
|
60 |
+
better_quality=better_quality,
|
61 |
+
mask_random_color=mask_random_color,
|
62 |
+
bbox=None,
|
63 |
+
use_retina=use_retina,
|
64 |
+
withContours=withContours,)
|
65 |
+
return fig
|
66 |
+
|
67 |
+
|
68 |
+
def segment_with_points(
|
69 |
+
input,
|
70 |
+
input_size=1024,
|
71 |
+
iou_threshold=0.7,
|
72 |
+
conf_threshold=0.25,
|
73 |
+
better_quality=False,
|
74 |
+
withContours=True,
|
75 |
+
use_retina=True,
|
76 |
+
mask_random_color=True,
|
77 |
+
):
|
78 |
+
global global_points
|
79 |
+
global global_point_label
|
80 |
+
|
81 |
+
input_size = int(input_size)
|
82 |
+
w, h = input.size
|
83 |
+
scale = input_size / max(w, h)
|
84 |
+
new_w = int(w * scale)
|
85 |
+
new_h = int(h * scale)
|
86 |
+
input = input.resize((new_w, new_h))
|
87 |
+
|
88 |
+
scaled_points = [[int(x * scale) for x in point] for point in global_points]
|
89 |
+
|
90 |
+
results = model(input,
|
91 |
+
device=device,
|
92 |
+
retina_masks=True,
|
93 |
+
iou=iou_threshold,
|
94 |
+
conf=conf_threshold,
|
95 |
+
imgsz=input_size,)
|
96 |
+
|
97 |
+
results = format_results(results[0], 0)
|
98 |
+
annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w)
|
99 |
+
annotations = np.array([annotations])
|
100 |
+
|
101 |
+
fig = fast_process(annotations=annotations,
|
102 |
+
image=input,
|
103 |
+
device=device,
|
104 |
+
scale=(1024 // input_size),
|
105 |
+
better_quality=better_quality,
|
106 |
+
mask_random_color=mask_random_color,
|
107 |
+
bbox=None,
|
108 |
+
use_retina=use_retina,
|
109 |
+
withContours=withContours,)
|
110 |
+
|
111 |
+
global_points = []
|
112 |
+
global_point_label = []
|
113 |
+
return fig, None
|
114 |
+
|
115 |
+
|
116 |
+
def get_points_with_draw(image, label, evt: gr.SelectData):
|
117 |
+
global global_points
|
118 |
+
global global_point_label
|
119 |
+
|
120 |
+
x, y = evt.index[0], evt.index[1]
|
121 |
+
point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255)
|
122 |
+
global_points.append([x, y])
|
123 |
+
global_point_label.append(1 if label == 'Add Mask' else 0)
|
124 |
+
|
125 |
+
print(x, y, label == 'Add Mask')
|
126 |
+
|
127 |
+
draw = ImageDraw.Draw(image)
|
128 |
+
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
|
129 |
+
return image
|
130 |
+
|
131 |
+
|
132 |
+
cond_img_e = gr.Image(label="Input", value=default_example[0], type='pil')
|
133 |
+
cond_img_p = gr.Image(label="Input with points", value=default_example[0], type='pil')
|
134 |
+
cond_img_t = gr.Image(label="Input with text", value="examples/dogs.jpg", type='pil')
|
135 |
+
|
136 |
+
segm_img_e = gr.Image(label="Segmented Image", interactive=False, type='pil')
|
137 |
+
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type='pil')
|
138 |
+
segm_img_t = gr.Image(label="Segmented Image with text", interactive=False, type='pil')
|
139 |
+
|
140 |
+
global_points = []
|
141 |
+
global_point_label = []
|
142 |
+
|
143 |
+
input_size_slider = gr.components.Slider(minimum=512,
|
144 |
+
maximum=1024,
|
145 |
+
value=1024,
|
146 |
+
step=64,
|
147 |
+
label='Input_size',
|
148 |
+
info='Our model was trained on a size of 1024')
|
149 |
+
|
150 |
+
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
151 |
+
with gr.Row():
|
152 |
+
with gr.Column(scale=1):
|
153 |
+
# Title
|
154 |
+
gr.Markdown(title)
|
155 |
+
|
156 |
+
with gr.Tab("Text mode"):
|
157 |
+
# Images
|
158 |
+
with gr.Row(variant="panel"):
|
159 |
+
with gr.Column(scale=1):
|
160 |
+
cond_img_t.render()
|
161 |
+
|
162 |
+
with gr.Column(scale=1):
|
163 |
+
segm_img_t.render()
|
164 |
+
|
165 |
+
# Submit & Clear
|
166 |
+
with gr.Row():
|
167 |
+
with gr.Column():
|
168 |
+
input_size_slider_t = gr.components.Slider(minimum=512,
|
169 |
+
maximum=1024,
|
170 |
+
value=1024,
|
171 |
+
step=64,
|
172 |
+
label='Input_size',
|
173 |
+
info='Our model was trained on a size of 1024')
|
174 |
+
with gr.Row():
|
175 |
+
with gr.Column():
|
176 |
+
contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')
|
177 |
+
text_box = gr.Textbox(label="text prompt", value="a black dog")
|
178 |
+
|
179 |
+
with gr.Column():
|
180 |
+
segment_btn_t = gr.Button("Segment with text", variant='primary')
|
181 |
+
clear_btn_t = gr.Button("Clear", variant="secondary")
|
182 |
+
|
183 |
+
gr.Markdown("Try some of the examples below ⬇️")
|
184 |
+
gr.Examples(examples=[["examples/dogs.jpg"], ["examples/fruits.jpg"], ["examples/flowers.jpg"]],
|
185 |
+
inputs=[cond_img_t],
|
186 |
+
examples_per_page=4)
|
187 |
+
|
188 |
+
with gr.Column():
|
189 |
+
with gr.Accordion("Advanced options", open=False):
|
190 |
+
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou', info='iou threshold for filtering the annotations')
|
191 |
+
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf', info='object confidence threshold')
|
192 |
+
with gr.Row():
|
193 |
+
mor_check = gr.Checkbox(value=False, label='better_visual_quality', info='better quality using morphologyEx')
|
194 |
+
retina_check = gr.Checkbox(value=True, label='use_retina', info='draw high-resolution segmentation masks')
|
195 |
+
wider_check = gr.Checkbox(value=False, label='wider', info='wider result')
|
196 |
+
|
197 |
+
segment_btn_t.click(segment_everything,
|
198 |
+
inputs=[
|
199 |
+
cond_img_t,
|
200 |
+
input_size_slider_t,
|
201 |
+
iou_threshold,
|
202 |
+
conf_threshold,
|
203 |
+
mor_check,
|
204 |
+
contour_check,
|
205 |
+
retina_check,
|
206 |
+
text_box,
|
207 |
+
wider_check,
|
208 |
+
],
|
209 |
+
outputs=segm_img_t)
|
210 |
+
|
211 |
+
def clear():
|
212 |
+
return None, None
|
213 |
+
|
214 |
+
def clear_text():
|
215 |
+
return None, None, None
|
216 |
+
|
217 |
+
clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e])
|
218 |
+
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])
|
219 |
+
clear_btn_t.click(clear_text, outputs=[cond_img_p, segm_img_p, text_box])
|
220 |
+
|
221 |
+
demo.queue()
|
222 |
+
demo.launch()
|