app update
Browse files
app.py
CHANGED
@@ -22,50 +22,6 @@ dropout = 0.0
|
|
22 |
|
23 |
torch.manual_seed(1337)
|
24 |
|
25 |
-
|
26 |
-
# with open('input.txt', 'r', encoding='utf-8') as f:
|
27 |
-
# text = f.read()
|
28 |
-
|
29 |
-
# # here are all the unique characters that occur in this text
|
30 |
-
# chars = sorted(list(set(text)))
|
31 |
-
# vocab_size = len(chars)
|
32 |
-
# # create a mapping from characters to integers
|
33 |
-
# stoi = { ch:i for i,ch in enumerate(chars) }
|
34 |
-
# itos = { i:ch for i,ch in enumerate(chars) }
|
35 |
-
# encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
|
36 |
-
# decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
|
37 |
-
|
38 |
-
# # Train and test splits
|
39 |
-
# data = torch.tensor(encode(text), dtype=torch.long)
|
40 |
-
# n = int(0.9*len(data)) # first 90% will be train, rest val
|
41 |
-
# train_data = data[:n]
|
42 |
-
# val_data = data[n:]
|
43 |
-
|
44 |
-
|
45 |
-
# # data loading
|
46 |
-
# def get_batch(split):
|
47 |
-
# # generate a small batch of data of inputs x and targets y
|
48 |
-
# data = train_data if split == 'train' else val_data
|
49 |
-
# ix = torch.randint(len(data) - block_size, (batch_size,))
|
50 |
-
# x = torch.stack([data[i:i+block_size] for i in ix])
|
51 |
-
# y = torch.stack([data[i+1:i+block_size+1] for i in ix])
|
52 |
-
# x, y = x.to(device), y.to(device)
|
53 |
-
# return x, y
|
54 |
-
|
55 |
-
# @torch.no_grad()
|
56 |
-
# def estimate_loss():
|
57 |
-
# out = {}
|
58 |
-
# model.eval()
|
59 |
-
# for split in ['train', 'val']:
|
60 |
-
# losses = torch.zeros(eval_iters)
|
61 |
-
# for k in range(eval_iters):
|
62 |
-
# X, Y = get_batch(split)
|
63 |
-
# logits, loss = model(X, Y)
|
64 |
-
# losses[k] = loss.item()
|
65 |
-
# out[split] = losses.mean()
|
66 |
-
# model.train()
|
67 |
-
# return out
|
68 |
-
|
69 |
class Head(nn.Module):
|
70 |
""" one head of self-attention """
|
71 |
|
@@ -138,7 +94,6 @@ class Block(nn.Module):
|
|
138 |
x = x + self.ffwd(self.ln2(x))
|
139 |
return x
|
140 |
|
141 |
-
# super simple bigram model
|
142 |
# super simple bigram model
|
143 |
class BigramLanguageModel(nn.Module):
|
144 |
def __init__(self, dataset_text, n_embd):
|
@@ -256,13 +211,16 @@ def generate_wikipedia_outputs(prompt=None, max_new_tokens=2000):
|
|
256 |
|
257 |
|
258 |
title = "Nano GPT"
|
259 |
-
|
|
|
260 |
|
261 |
shakespeare_interface = gr.Interface(generate_shakespeare_outputs,
|
262 |
inputs=[gr.Textbox(label="Enter any prompt ", type="text", value="Once upon a time,"),
|
263 |
gr.Slider(minimum=100, maximum=5000, step=100, value=2000, label="Max new tokens")],
|
264 |
outputs=gr.Textbox(label="Output generated", type="text"), description=description)
|
265 |
|
|
|
|
|
266 |
wiki_interface = gr.Interface(generate_wikipedia_outputs,
|
267 |
inputs=[gr.Textbox(label="Enter any prompt ", type="text", value="James Bond"),
|
268 |
gr.Slider(minimum=100, maximum=5000, step=100, value=2000, label="Max new tokens")],
|
|
|
22 |
|
23 |
torch.manual_seed(1337)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
class Head(nn.Module):
|
26 |
""" one head of self-attention """
|
27 |
|
|
|
94 |
x = x + self.ffwd(self.ln2(x))
|
95 |
return x
|
96 |
|
|
|
97 |
# super simple bigram model
|
98 |
class BigramLanguageModel(nn.Module):
|
99 |
def __init__(self, dataset_text, n_embd):
|
|
|
211 |
|
212 |
|
213 |
title = "Nano GPT"
|
214 |
+
|
215 |
+
description1 = "Nano GPT trained on Shakespeare dataset. It is trained on a very small amount of data to understand how GPT's are trained and built. The implementation can be found <a href='https://github.com/karpathy/nanoGPT'>here.</a>"
|
216 |
|
217 |
shakespeare_interface = gr.Interface(generate_shakespeare_outputs,
|
218 |
inputs=[gr.Textbox(label="Enter any prompt ", type="text", value="Once upon a time,"),
|
219 |
gr.Slider(minimum=100, maximum=5000, step=100, value=2000, label="Max new tokens")],
|
220 |
outputs=gr.Textbox(label="Output generated", type="text"), description=description)
|
221 |
|
222 |
+
description2 = "Nano GPT trained on Wikipedia dataset. It is trained on a very small amount of data to understand how GPT's are trained and built. The implementation can be found <a href='https://github.com/karpathy/nanoGPT'>here.</a>"
|
223 |
+
|
224 |
wiki_interface = gr.Interface(generate_wikipedia_outputs,
|
225 |
inputs=[gr.Textbox(label="Enter any prompt ", type="text", value="James Bond"),
|
226 |
gr.Slider(minimum=100, maximum=5000, step=100, value=2000, label="Max new tokens")],
|