mkthoma commited on
Commit
a8af462
·
1 Parent(s): 753da27

app update

Browse files
Files changed (1) hide show
  1. app.py +4 -46
app.py CHANGED
@@ -22,50 +22,6 @@ dropout = 0.0
22
 
23
  torch.manual_seed(1337)
24
 
25
-
26
- # with open('input.txt', 'r', encoding='utf-8') as f:
27
- # text = f.read()
28
-
29
- # # here are all the unique characters that occur in this text
30
- # chars = sorted(list(set(text)))
31
- # vocab_size = len(chars)
32
- # # create a mapping from characters to integers
33
- # stoi = { ch:i for i,ch in enumerate(chars) }
34
- # itos = { i:ch for i,ch in enumerate(chars) }
35
- # encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
36
- # decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
37
-
38
- # # Train and test splits
39
- # data = torch.tensor(encode(text), dtype=torch.long)
40
- # n = int(0.9*len(data)) # first 90% will be train, rest val
41
- # train_data = data[:n]
42
- # val_data = data[n:]
43
-
44
-
45
- # # data loading
46
- # def get_batch(split):
47
- # # generate a small batch of data of inputs x and targets y
48
- # data = train_data if split == 'train' else val_data
49
- # ix = torch.randint(len(data) - block_size, (batch_size,))
50
- # x = torch.stack([data[i:i+block_size] for i in ix])
51
- # y = torch.stack([data[i+1:i+block_size+1] for i in ix])
52
- # x, y = x.to(device), y.to(device)
53
- # return x, y
54
-
55
- # @torch.no_grad()
56
- # def estimate_loss():
57
- # out = {}
58
- # model.eval()
59
- # for split in ['train', 'val']:
60
- # losses = torch.zeros(eval_iters)
61
- # for k in range(eval_iters):
62
- # X, Y = get_batch(split)
63
- # logits, loss = model(X, Y)
64
- # losses[k] = loss.item()
65
- # out[split] = losses.mean()
66
- # model.train()
67
- # return out
68
-
69
  class Head(nn.Module):
70
  """ one head of self-attention """
71
 
@@ -138,7 +94,6 @@ class Block(nn.Module):
138
  x = x + self.ffwd(self.ln2(x))
139
  return x
140
 
141
- # super simple bigram model
142
  # super simple bigram model
143
  class BigramLanguageModel(nn.Module):
144
  def __init__(self, dataset_text, n_embd):
@@ -256,13 +211,16 @@ def generate_wikipedia_outputs(prompt=None, max_new_tokens=2000):
256
 
257
 
258
  title = "Nano GPT"
259
- description = "Nano GPT trained on Shakespeare and Wikipedia datasets. It is trained on a very small amount of data to understand how GPT's are trained and built. <a href='https://github.com/karpathy/nanoGPT'>The implementation can be found here </a>"
 
260
 
261
  shakespeare_interface = gr.Interface(generate_shakespeare_outputs,
262
  inputs=[gr.Textbox(label="Enter any prompt ", type="text", value="Once upon a time,"),
263
  gr.Slider(minimum=100, maximum=5000, step=100, value=2000, label="Max new tokens")],
264
  outputs=gr.Textbox(label="Output generated", type="text"), description=description)
265
 
 
 
266
  wiki_interface = gr.Interface(generate_wikipedia_outputs,
267
  inputs=[gr.Textbox(label="Enter any prompt ", type="text", value="James Bond"),
268
  gr.Slider(minimum=100, maximum=5000, step=100, value=2000, label="Max new tokens")],
 
22
 
23
  torch.manual_seed(1337)
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  class Head(nn.Module):
26
  """ one head of self-attention """
27
 
 
94
  x = x + self.ffwd(self.ln2(x))
95
  return x
96
 
 
97
  # super simple bigram model
98
  class BigramLanguageModel(nn.Module):
99
  def __init__(self, dataset_text, n_embd):
 
211
 
212
 
213
  title = "Nano GPT"
214
+
215
+ description1 = "Nano GPT trained on Shakespeare dataset. It is trained on a very small amount of data to understand how GPT's are trained and built. The implementation can be found <a href='https://github.com/karpathy/nanoGPT'>here.</a>"
216
 
217
  shakespeare_interface = gr.Interface(generate_shakespeare_outputs,
218
  inputs=[gr.Textbox(label="Enter any prompt ", type="text", value="Once upon a time,"),
219
  gr.Slider(minimum=100, maximum=5000, step=100, value=2000, label="Max new tokens")],
220
  outputs=gr.Textbox(label="Output generated", type="text"), description=description)
221
 
222
+ description2 = "Nano GPT trained on Wikipedia dataset. It is trained on a very small amount of data to understand how GPT's are trained and built. The implementation can be found <a href='https://github.com/karpathy/nanoGPT'>here.</a>"
223
+
224
  wiki_interface = gr.Interface(generate_wikipedia_outputs,
225
  inputs=[gr.Textbox(label="Enter any prompt ", type="text", value="James Bond"),
226
  gr.Slider(minimum=100, maximum=5000, step=100, value=2000, label="Max new tokens")],