Spaces:
Runtime error
Runtime error
File size: 6,480 Bytes
37db1e1 b83473a c7272f2 37db1e1 0879a7e b83473a b9b612c b83473a b9b612c b83473a 37db1e1 184c542 b83473a ef19c0b c7272f2 b83473a c7272f2 345cd83 c7272f2 b83473a c7272f2 b9b612c c7272f2 84b598c c7272f2 0fa1652 027aeb0 c7272f2 84b598c c7272f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
from fastapi import FastAPI
from fastapi.responses import HTMLResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from typing import Dict, List, Any, Tuple
import pickle
import math
import re
import gc
from utils import split
import torch
from build_vocab import WordVocab
from pretrain_trfm import TrfmSeq2seq
from transformers import T5EncoderModel, T5Tokenizer
import numpy as np
import pydantic
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/", response_class=HTMLResponse)
async def read_root():
return FileResponse("static/index.html")
class PredictData(pydantic.BaseModel):
sequence: str
smiles: str
@app.post("/api/predict")
async def predict(data: PredictData):
endpointHandler = EndpointHandler()
result = endpointHandler.predict({
"inputs": {
"sequence": data.sequence,
"smiles": data.smiles
}
})
return result
tokenizer = T5Tokenizer.from_pretrained(
"Rostlab/prot_t5_xl_half_uniref50-enc", do_lower_case=False, torch_dtype=torch.float16)
model = T5EncoderModel.from_pretrained(
"Rostlab/prot_t5_xl_half_uniref50-enc")
class EndpointHandler():
def __init__(self, path=""):
self.tokenizer = tokenizer
self.model = model
# path to the vocab_content and trfm model
vocab_content_path = "vocab_content.txt"
trfm_path = "trfm_12_23000.pkl"
# load the vocab_content instead of the pickle file
with open(vocab_content_path, "r", encoding="utf-8") as f:
vocab_content = f.read().strip().split("\n")
# load the vocab and trfm model
self.vocab = WordVocab(vocab_content)
self.trfm = TrfmSeq2seq(len(self.vocab), 256, len(self.vocab), 4)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
self.trfm.load_state_dict(torch.load(trfm_path, map_location=device))
self.trfm.eval()
# path to the pretrained models
self.Km_model_path = "Km.pkl"
self.Kcat_model_path = "Kcat.pkl"
self.Kcat_over_Km_model_path = "Kcat_over_Km.pkl"
# vocab indices
self.pad_index = 0
self.unk_index = 1
self.eos_index = 2
self.sos_index = 3
def predict(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
Function where the endpoint logic is implemented.
Args:
data (Dict[str, Any]): The input data for the endpoint. It only contain a single key "inputs" which is a list of dictionaries. The dictionary contains the following keys:
- sequence (str): Amino acid sequence.
- smiles (str): SMILES representation of the molecule.
Returns:
Dict[str, Any]: The output data for the endpoint. The dictionary contains the following keys:
- Km (float): float of predicted Km value.
- Kcat (float): float of predicted Kcat value.
- Vmax (float): float of predicted Vmax value.
"""
sequence = data["inputs"]["sequence"]
smiles = data["inputs"]["smiles"]
seq_vec = self.Seq_to_vec(sequence)
smiles_vec = self.smiles_to_vec(smiles)
fused_vector = np.concatenate((smiles_vec, seq_vec), axis=1)
pred_Km = self.predict_feature_using_model(
fused_vector, self.Km_model_path)
pred_Kcat = self.predict_feature_using_model(
fused_vector, self.Kcat_model_path)
pred_Vmax = self.predict_feature_using_model(
fused_vector, self.Kcat_over_Km_model_path)
result = {
"Km": pred_Km,
"Kcat": pred_Kcat,
"Vmax": pred_Vmax,
}
return result
def predict_feature_using_model(self, X: np.array, model_path: str) -> float:
"""
Function to predict the feature using the pretrained model.
"""
with open(model_path, "rb") as f:
model = pickle.load(f)
pred_feature = model.predict(X)
pred_feature_pow = math.pow(10, pred_feature)
return pred_feature_pow
def smiles_to_vec(self, Smiles: str) -> np.array:
"""
Function to convert the smiles to a vector using the pretrained model.
"""
Smiles = [Smiles]
x_split = [split(sm) for sm in Smiles]
xid, xseg = self.get_array(x_split, self.vocab)
X = self.trfm.encode(torch.t(xid))
return X
def get_inputs(self, sm: str, vocab: WordVocab) -> Tuple[List[int], List[int]]:
"""
Convert smiles to tensor
"""
seq_len = len(sm)
sm = sm.split()
ids = [vocab.stoi.get(token, self.unk_index) for token in sm]
ids = [self.sos_index] + ids + [self.eos_index]
seg = [1]*len(ids)
padding = [self.pad_index]*(seq_len - len(ids))
ids.extend(padding), seg.extend(padding)
return ids, seg
def get_array(self, smiles: list[str], vocab: WordVocab) -> Tuple[torch.tensor, torch.tensor]:
"""
Convert smiles to tensor
"""
x_id, x_seg = [], []
for sm in smiles:
a,b = self.get_inputs(sm, vocab)
x_id.append(a)
x_seg.append(b)
return torch.tensor(x_id), torch.tensor(x_seg)
def Seq_to_vec(self, Sequence: str) -> np.array:
"""
Function to convert the sequence to a vector using the pretrained model.
"""
Sequence = [Sequence]
sequences_Example = []
for i in range(len(Sequence)):
zj = ''
for j in range(len(Sequence[i]) - 1):
zj += Sequence[i][j] + ' '
zj += Sequence[i][-1]
sequences_Example.append(zj)
gc.collect()
print(torch.cuda.is_available())
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
self.model = self.model.to(device)
self.model = self.model.eval()
features = []
for i in range(len(sequences_Example)):
sequences_Example_i = sequences_Example[i]
sequences_Example_i = [re.sub(r"[UZOB]", "X", sequences_Example_i)]
ids = self.tokenizer.batch_encode_plus(sequences_Example_i, add_special_tokens=True, padding=True)
input_ids = torch.tensor(ids['input_ids']).to(device)
attention_mask = torch.tensor(ids['attention_mask']).to(device)
with torch.no_grad():
embedding = self.model(input_ids=input_ids, attention_mask=attention_mask)
embedding = embedding.last_hidden_state.cpu().numpy()
for seq_num in range(len(embedding)):
seq_len = (attention_mask[seq_num] == 1).sum()
seq_emd = embedding[seq_num][:seq_len - 1]
features.append(seq_emd)
features_normalize = np.zeros([len(features), len(features[0][0])], dtype=float)
for i in range(len(features)):
for k in range(len(features[0][0])):
for j in range(len(features[i])):
features_normalize[i][k] += features[i][j][k]
features_normalize[i][k] /= len(features[i])
return features_normalize
|