from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from typing import Dict, List, Any, Tuple import pickle import math import re import gc from utils import split import torch from build_vocab import WordVocab from pretrain_trfm import TrfmSeq2seq from transformers import T5EncoderModel, T5Tokenizer import numpy as np app = FastAPI() # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"] ) @app.get("/predict") def predict_UniKP_values( sequence: str, smiles: str ): endpointHandler = EndpointHandler() result = endpointHandler.predict({ "inputs": { "sequence": sequence, "smiles": smiles } }) return result class EndpointHandler(): def __init__(self, path=""): # load tokenizer and model self.tokenizer = T5Tokenizer.from_pretrained( "Rostlab/prot_t5_xl_half_uniref50-enc", do_lower_case=False, torch_dtype=torch.float16) self.model = T5EncoderModel.from_pretrained( "Rostlab/prot_t5_xl_half_uniref50-enc") # path to the vocab_content and trfm model vocab_content_path = f"{path}/vocab_content.txt" trfm_path = f"{path}/trfm_12_23000.pkl" # load the vocab_content instead of the pickle file with open(vocab_content_path, "r", encoding="utf-8") as f: vocab_content = f.read().strip().split("\n") # load the vocab and trfm model self.vocab = WordVocab(vocab_content) self.trfm = TrfmSeq2seq(len(self.vocab), 256, len(self.vocab), 4) self.trfm.load_state_dict(torch.load(trfm_path)) self.trfm.eval() # path to the pretrained models self.Km_model_path = f"{path}/Km.pkl" self.Kcat_model_path = f"{path}/Kcat.pkl" self.Kcat_over_Km_model_path = f"{path}/Kcat_over_Km.pkl" # vocab indices self.pad_index = 0 self.unk_index = 1 self.eos_index = 2 self.sos_index = 3 def predict(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ Function where the endpoint logic is implemented. Args: data (Dict[str, Any]): The input data for the endpoint. It only contain a single key "inputs" which is a list of dictionaries. The dictionary contains the following keys: - sequence (str): Amino acid sequence. - smiles (str): SMILES representation of the molecule. Returns: Dict[str, Any]: The output data for the endpoint. The dictionary contains the following keys: - Km (float): float of predicted Km value. - Kcat (float): float of predicted Kcat value. - Vmax (float): float of predicted Vmax value. """ sequence = data["inputs"]["sequence"] smiles = data["inputs"]["smiles"] seq_vec = self.Seq_to_vec(sequence) smiles_vec = self.smiles_to_vec(smiles) fused_vector = np.concatenate((smiles_vec, seq_vec), axis=1) pred_Km = self.predict_feature_using_model( fused_vector, self.Km_model_path) pred_Kcat = self.predict_feature_using_model( fused_vector, self.Kcat_model_path) pred_Vmax = self.predict_feature_using_model( fused_vector, self.Kcat_over_Km_model_path) result = { "Km": pred_Km, "Kcat": pred_Kcat, "Vmax": pred_Vmax, } return result def predict_feature_using_model(self, X: np.array, model_path: str) -> float: """ Function to predict the feature using the pretrained model. """ with open(model_path, "rb") as f: model = pickle.load(f) pred_feature = model.predict(X) pred_feature_pow = math.pow(10, pred_feature) return pred_feature_pow def smiles_to_vec(self, Smiles: str) -> np.array: """ Function to convert the smiles to a vector using the pretrained model. """ Smiles = [Smiles] x_split = [split(sm) for sm in Smiles] xid, xseg = self.get_array(x_split, self.vocab) X = self.trfm.encode(torch.t(xid)) return X def get_inputs(self, sm: str, vocab: WordVocab) -> Tuple[List[int], List[int]]: """ Convert smiles to tensor """ seq_len = len(sm) sm = sm.split() ids = [vocab.stoi.get(token, self.unk_index) for token in sm] ids = [self.sos_index] + ids + [self.eos_index] seg = [1]*len(ids) padding = [self.pad_index]*(seq_len - len(ids)) ids.extend(padding), seg.extend(padding) return ids, seg def get_array(self, smiles: list[str], vocab: WordVocab) -> Tuple[torch.tensor, torch.tensor]: """ Convert smiles to tensor """ x_id, x_seg = [], [] for sm in smiles: a,b = self.get_inputs(sm, vocab) x_id.append(a) x_seg.append(b) return torch.tensor(x_id), torch.tensor(x_seg) def Seq_to_vec(self, Sequence: str) -> np.array: """ Function to convert the sequence to a vector using the pretrained model. """ Sequence = [Sequence] sequences_Example = [] for i in range(len(Sequence)): zj = '' for j in range(len(Sequence[i]) - 1): zj += Sequence[i][j] + ' ' zj += Sequence[i][-1] sequences_Example.append(zj) gc.collect() print(torch.cuda.is_available()) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') self.model = self.model.to(device) self.model = self.model.eval() features = [] for i in range(len(sequences_Example)): sequences_Example_i = sequences_Example[i] sequences_Example_i = [re.sub(r"[UZOB]", "X", sequences_Example_i)] ids = self.tokenizer.batch_encode_plus(sequences_Example_i, add_special_tokens=True, padding=True) input_ids = torch.tensor(ids['input_ids']).to(device) attention_mask = torch.tensor(ids['attention_mask']).to(device) with torch.no_grad(): embedding = self.model(input_ids=input_ids, attention_mask=attention_mask) embedding = embedding.last_hidden_state.cpu().numpy() for seq_num in range(len(embedding)): seq_len = (attention_mask[seq_num] == 1).sum() seq_emd = embedding[seq_num][:seq_len - 1] features.append(seq_emd) features_normalize = np.zeros([len(features), len(features[0][0])], dtype=float) for i in range(len(features)): for k in range(len(features[0][0])): for j in range(len(features[i])): features_normalize[i][k] += features[i][j][k] features_normalize[i][k] /= len(features[i]) return features_normalize