""" General streamlit diarization application """ import os import shutil from io import BytesIO from typing import Dict, Union from pathlib import Path import librosa import librosa.display import matplotlib.figure import numpy as np import streamlit as st import streamlit.uploaded_file_manager from PIL import Image from pydub import AudioSegment from matplotlib import pyplot as plt import configs from utils import audio_utils, text_utils, general_utils, streamlit_utils from diarizers import pyannote_diarizer, nemo_diarizer plt.rcParams["figure.figsize"] = (10, 5) def plot_audio_diarization(diarization_figure: Union[plt.gcf, np.array], diarization_name: str, audio_data: np.array, sampling_frequency: int): """ Function that plots the audio along with the different applied diarization techniques Args: diarization_figure (plt.gcf): the diarization figure to plot diarization_name (str): the name of the diarization technique audio_data (np.array): the audio numpy array sampling_frequency (int): the audio sampling frequency """ col1, col2 = st.columns([3, 5]) with col1: st.markdown( f"

Original

", unsafe_allow_html=True, ) st.markdown("

", unsafe_allow_html=True) st.audio(audio_utils.create_st_audio_virtualfile(audio_data, sampling_frequency)) with col2: st.markdown( f"

{diarization_name}

", unsafe_allow_html=True, ) if type(diarization_figure) == matplotlib.figure.Figure: buf = BytesIO() diarization_figure.savefig(buf, format="png") st.image(buf) else: st.image(diarization_figure) st.markdown("---") def execute_diarization(file_uploader: st.uploaded_file_manager.UploadedFile, selected_option: any, sample_option_dict: Dict[str, str], diarization_checkbox_dict: Dict[str, bool], session_id: str): """ Function that exectutes the diarization based on the specified files and pipelines Args: file_uploader (st.uploaded_file_manager.UploadedFile): the uploaded streamlit audio file selected_option (any): the selected option of samples Dict[str, str]: a dictionary where the name is the file name (without extension to be listed as an option for the user) and the value is the original file name diarization_checkbox_dict (Dict[str, bool]): dictionary where the key is the Diarization technique name and the value is a boolean indicating whether to apply that technique session_id (str): unique id of the user session """ user_folder = os.path.join(configs.UPLOADED_AUDIO_SAMPLES_DIR, session_id) Path(user_folder).mkdir(parents=True, exist_ok=True) if file_uploader is not None: file_name = file_uploader.name file_path = os.path.join(user_folder, file_name) audio = AudioSegment.from_wav(file_uploader).set_channels(1) # slice first 30 seconds (slicing is done by ms) audio = audio[0:1000 * 30] audio.export(file_path, format='wav') else: file_name = sample_option_dict[selected_option] file_path = os.path.join(configs.AUDIO_SAMPLES_DIR, file_name) audio_data, sampling_frequency = librosa.load(file_path) nb_pipelines_to_run = sum(pipeline_bool for pipeline_bool in diarization_checkbox_dict.values()) pipeline_count = 0 for diarization_idx, (diarization_name, diarization_bool) in \ enumerate(diarization_checkbox_dict.items()): if diarization_bool: pipeline_count += 1 if diarization_name == 'pyannote': diarizer = pyannote_diarizer.PyannoteDiarizer(file_path) elif diarization_name == 'NeMo': diarizer = nemo_diarizer.NemoDiarizer(file_path, user_folder) else: raise NotImplementedError('Framework not recognized') if file_uploader is not None: with st.spinner( f"Executing {pipeline_count}/{nb_pipelines_to_run} diarization pipelines " f"({diarization_name}). This might take 1-2 minutes..."): diarizer_figure = diarizer.get_diarization_figure() else: diarizer_figure = Image.open(f"{configs.PRECOMPUTED_DIARIZATION_FIGURE}/" f"{file_name.rsplit('.')[0]}_{diarization_name}.png") plot_audio_diarization(diarizer_figure, diarization_name, audio_data, sampling_frequency) shutil.rmtree(user_folder) st.set_page_config( page_title="📜 Audio diarization visualization 📜", page_icon="", layout="wide", initial_sidebar_state="auto", menu_items={ 'Get help': None, 'Report a bug': None, 'About': None, } ) text_utils.intro_container() # 2.1) Diarization method text_utils.demo_container() st.markdown("Choose the Diarization method here:") diarization_checkbox_dict = {} for diarization_method in configs.DIARIZATION_METHODS: diarization_checkbox_dict[diarization_method] = st.checkbox( diarization_method) # 2.2) Diarization upload/sample select st.markdown("(Optional) Upload an audio file here:") file_uploader = st.file_uploader( label="", type=[".wav", ".wave"] ) sample_option_dict = general_utils.get_dict_of_audio_samples(configs.AUDIO_SAMPLES_DIR) st.markdown("Or select a sample file here:") selected_option = st.selectbox( label="", options=list(sample_option_dict.keys()) ) st.markdown("---") ## 2.3) Apply specified diarization pipeline if st.button("Apply"): session_id = streamlit_utils.get_session() execute_diarization( file_uploader=file_uploader, selected_option=selected_option, sample_option_dict=sample_option_dict, diarization_checkbox_dict=diarization_checkbox_dict, session_id=session_id ) text_utils.conlusion_container()