dynamic-pricing / helpers /thompson_sampling.py
mathiasleys's picture
Implement retry mechanism
e819afa
raw
history blame
4.51 kB
"""Helper file for Thompson sampling"""
import pickle
import random
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
from tenacity import retry, stop_after_attempt, wait_fixed
import config as cfg
random.seed(42)
class ThompsonSampler:
def __init__(self):
self.placeholder = st.empty()
self.latent_elasticity = cfg.LATENT_ELASTICITY
self.price_observations = np.concatenate(
[np.repeat(10,10), np.repeat(7.5,25), np.repeat(11,15)]
)
self.update_demand_observations()
self.possible_prices = np.linspace(0, 20, 100)
self.price_samples = []
self.latent_demand = self.calc_latent_demand()
self.latent_price = self.calc_optimal_price(self.latent_demand, sample=False)
self.update_posteriors()
def update_demand_observations(self):
self.demand_observations = np.exp(
np.random.normal(
loc=-self.latent_elasticity*self.price_observations+cfg.LATENT_SHAPE,
scale=cfg.LATENT_STDEV,
)
)
def update_elasticity(self):
self.latent_elasticity = st.session_state.latent_elasticity
self.price_samples = []
self.latent_demand = self.calc_latent_demand()
self.update_demand_observations()
self.latent_price = self.calc_optimal_price(self.latent_demand, sample=False)
self.update_posteriors(samples=75)
self.create_plots()
def create_plots(self, highlighted_sample=None):
with self.placeholder.container():
posterior_plot, price_plot = st.columns(2)
with posterior_plot:
st.markdown("## Demands")
fig = self.create_posteriors_plot(highlighted_sample)
st.write(fig)
plt.close(fig)
with price_plot:
st.markdown("## Prices")
fig = self.create_price_plot()
st.write(fig)
plt.close(fig)
def create_price_plot(self):
fig = plt.figure()
plt.xlabel("Price")
plt.xlim(0,20)
plt.yticks(color='w')
price_distr = [self.calc_optimal_price(post_demand, sample=False)
for post_demand in self.posterior]
plt.violinplot(price_distr, vert=False, showextrema=False)
for price in self.price_samples:
plt.plot(price, 1, marker='o', markersize = 5, color='grey')
plt.axhline(1, color='black')
plt.axvline(self.latent_price, 0, color='red')
return fig
def create_posteriors_plot(self, highlighted_sample=None):
fig = plt.figure()
plt.xlabel("Price")
plt.ylabel("Demand")
plt.xlim(0,20)
plt.ylim(0,10)
plt.scatter(self.price_observations, self.demand_observations)
plt.plot(self.possible_prices, self.latent_demand, color="red")
for posterior_sample in self.posterior_samples:
plt.plot(self.possible_prices, posterior_sample, color="grey", alpha=0.15)
if highlighted_sample is not None:
plt.plot(self.possible_prices, highlighted_sample, color="black")
return fig
def calc_latent_demand(self):
return np.exp(
-self.latent_elasticity*self.possible_prices + cfg.LATENT_SHAPE
)
@staticmethod
@np.vectorize
def _cost(demand):
return cfg.VARIABLE_COST*demand + cfg.FIXED_COST
def calc_optimal_price(self, sampled_demand, sample=False):
revenue = self.possible_prices * sampled_demand
profit = revenue - self._cost(sampled_demand)
optimal_price = self.possible_prices[np.argmax(profit)]
if sample:
self.price_samples.append(optimal_price)
return optimal_price
def update_posteriors(self, samples=75):
with open(f"assets/precalc_results/posterior_{self.latent_elasticity}.pkl", "rb") as post:
self.posterior = pickle.load(post)
self.posterior_samples = random.sample(self.posterior, samples)
def pick_posterior(self):
posterior_sample = random.choice(self.posterior_samples)
self.calc_optimal_price(posterior_sample, sample=True)
self.create_plots(highlighted_sample=posterior_sample)
@retry(stop=stop_after_attempt(5), wait=wait_fixed(0.25))
def run(self):
if st.session_state.latent_elasticity != self.latent_elasticity:
self.update_elasticity()
self.pick_posterior()