File size: 20,868 Bytes
76254b2 b59fcf5 305fb83 76254b2 08e0095 76254b2 305fb83 08e0095 76254b2 f51bffc 357d42c f51bffc 357d42c f51bffc 305fb83 76254b2 8545c27 f51bffc 8545c27 76254b2 b59fcf5 76254b2 edba6fe 305fb83 32e1bb2 edba6fe 32e1bb2 edba6fe 10364d0 32e1bb2 edba6fe 76254b2 08e0095 76254b2 cf834f9 76254b2 f51bffc 8545c27 b59fcf5 08e0095 b59fcf5 f51bffc 8545c27 f51bffc 8545c27 b59fcf5 76254b2 f51bffc 357d42c 8545c27 357d42c f51bffc 357d42c f51bffc 08e0095 32e1bb2 08e0095 f51bffc 08e0095 f51bffc 08e0095 f51bffc 08e0095 357d42c 08e0095 f51bffc 08e0095 357d42c 08e0095 f51bffc 305fb83 f51bffc 08e0095 f51bffc 08e0095 8aa1525 08e0095 f51bffc 08e0095 32e1bb2 08e0095 357d42c 08e0095 357d42c f51bffc 357d42c 08e0095 f51bffc 08e0095 f51bffc 357d42c f51bffc 357d42c f51bffc 357d42c f51bffc 08e0095 357d42c 08e0095 357d42c f51bffc 357d42c f51bffc 08e0095 f51bffc 08e0095 305fb83 08e0095 305fb83 08e0095 edba6fe 2c184b3 edba6fe 08e0095 305fb83 08e0095 305fb83 08e0095 357d42c 08e0095 357d42c 08e0095 357d42c 305fb83 357d42c 08e0095 305fb83 08e0095 357d42c 305fb83 357d42c 305fb83 08e0095 305fb83 357d42c 305fb83 08e0095 357d42c 305fb83 357d42c 305fb83 357d42c 305fb83 357d42c 305fb83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import random
from typing import AnyStr
# import tensorflow_hub as hub
import itertools
import streamlit as st
import torch.nn.parameter
from bs4 import BeautifulSoup
import numpy as np
import base64
import validators
from spacy_streamlit.util import get_svg
from validators import ValidationFailure
from custom_renderer import render_sentence_custom
from flair.data import Sentence
from flair.models import SequenceTagger
from sentence_transformers import SentenceTransformer
import spacy
from spacy import displacy
from spacy_streamlit import visualize_parser
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
import os
from transformers_interpret import SequenceClassificationExplainer
# USE_model = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@st.experimental_singleton
def get_sentence_embedding_model():
return SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
@st.experimental_singleton
def get_spacy():
nlp = spacy.load('en_core_web_lg')
return nlp
#TODO: might look into which one is the best here
#TODO: might be useful to make an ml6 preloaded model for flair as this takes ridiculously long to load the first time
@st.experimental_singleton
#@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def get_flair_tagger():
return SequenceTagger.load("flair/ner-english-ontonotes-fast")
# Page setup
st.set_page_config(
page_title="Post-processing summarization fact checker",
page_icon="",
layout="centered",
initial_sidebar_state="auto",
menu_items={
'Get help': None,
'Report a bug': None,
'About': None,
}
)
def list_all_article_names() -> list:
filenames = []
for file in sorted(os.listdir('./sample-articles/')):
if file.endswith('.txt'):
filenames.append(file.replace('.txt', ''))
return filenames
def fetch_article_contents(filename: str) -> AnyStr:
with open(f'./sample-articles/{filename.lower()}.txt', 'r') as f:
data = f.read()
return data
def fetch_summary_contents(filename: str) -> AnyStr:
with open(f'./sample-summaries/{filename.lower()}.txt', 'r') as f:
data = f.read()
return data
def fetch_entity_specific_contents(filename: str) -> AnyStr:
with open(f'./entity-specific-text/{filename.lower()}.txt', 'r') as f:
data = f.read()
return data
def fetch_dependency_specific_contents(filename: str) -> AnyStr:
with open(f'./dependency-specific-text/{filename.lower()}.txt', 'r') as f:
data = f.read()
return data
def display_summary(article_name: str):
summary_content = fetch_summary_contents(article_name)
st.session_state.summary_output = summary_content
soup = BeautifulSoup(summary_content, features="html.parser")
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>"""
return HTML_WRAPPER.format(soup)
def get_all_entities_per_sentence(text):
# load all NER models
# nlp = get_spacy()
# tagger = get_flair_tagger()
doc = nlp(text)
sentences = list(doc.sents)
entities_all_sentences = []
for sentence in sentences:
entities_this_sentence = []
# SPACY ENTITIES
for entity in sentence.ents:
entities_this_sentence.append(str(entity))
# FLAIR ENTITIES
sentence_entities = Sentence(str(sentence))
tagger.predict(sentence_entities)
for entity in sentence_entities.get_spans('ner'):
entities_this_sentence.append(entity.text)
entities_all_sentences.append(entities_this_sentence)
return entities_all_sentences
def get_all_entities(text):
all_entities_per_sentence = get_all_entities_per_sentence(text)
return list(itertools.chain.from_iterable(all_entities_per_sentence))
# TODO: this functionality can be cached (e.g. by storing html file output) if wanted (or just store list of entities idk)
def get_and_compare_entities(article_name: str):
article_content = fetch_article_contents(article_name)
all_entities_per_sentence = get_all_entities_per_sentence(article_content)
# st.session_state.entities_per_sentence_article = all_entities_per_sentence
entities_article = list(itertools.chain.from_iterable(all_entities_per_sentence))
summary_content = fetch_summary_contents(article_name)
all_entities_per_sentence = get_all_entities_per_sentence(summary_content)
# st.session_state.entities_per_sentence_summary = all_entities_per_sentence
entities_summary = list(itertools.chain.from_iterable(all_entities_per_sentence))
matched_entities = []
unmatched_entities = []
for entity in entities_summary:
# TODO: currently substring matching but probably should do embedding method or idk?
if any(entity.lower() in substring_entity.lower() for substring_entity in entities_article):
matched_entities.append(entity)
elif any(
np.inner(sentence_embedding_model.encode(entity), sentence_embedding_model.encode(art_entity)) > 0.9 for
art_entity in entities_article):
matched_entities.append(entity)
else:
unmatched_entities.append(entity)
return matched_entities, unmatched_entities
def highlight_entities(article_name: str):
summary_content = fetch_summary_contents(article_name)
markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">"
markdown_start_green = "<mark class=\"entity\" style=\"background: rgb(121, 236, 121);\">"
markdown_end = "</mark>"
matched_entities, unmatched_entities = get_and_compare_entities(article_name)
for entity in matched_entities:
summary_content = summary_content.replace(entity, markdown_start_green + entity + markdown_end)
for entity in unmatched_entities:
summary_content = summary_content.replace(entity, markdown_start_red + entity + markdown_end)
soup = BeautifulSoup(summary_content, features="html.parser")
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem;
margin-bottom: 2.5rem">{}</div> """
return HTML_WRAPPER.format(soup)
def render_dependency_parsing(text: str):
html = render_sentence_custom(text)
html = html.replace("\n\n", "\n")
st.write(get_svg(html), unsafe_allow_html=True)
# If deps for article: True, otherwise deps for summary calc
def check_dependency(article: bool):
# nlp = spacy.load('en_core_web_lg')
if article:
text = st.session_state.article_text
all_entities = get_all_entities_per_sentence(text)
# all_entities = st.session_state.entities_per_sentence_article
else:
text = st.session_state.summary_output
all_entities = get_all_entities_per_sentence(text)
# all_entities = st.session_state.entities_per_sentence_summary
doc = nlp(text)
tok_l = doc.to_json()['tokens']
# all_deps = ""
test_list_dict_output = []
sentences = list(doc.sents)
for i, sentence in enumerate(sentences):
start_id = sentence.start
end_id = sentence.end
for t in tok_l:
# print(t)
if t["id"] < start_id or t["id"] > end_id:
continue
head = tok_l[t['head']]
if t['dep'] == 'amod' or t['dep'] == "pobj":
object_here = text[t['start']:t['end']]
object_target = text[head['start']:head['end']]
if t['dep'] == "pobj" and str.lower(object_target) != "in":
continue
# ONE NEEDS TO BE ENTITY
if object_here in all_entities[i]:
# all_deps = all_deps.join(str(sentence))
identifier = object_here + t['dep'] + object_target
test_list_dict_output.append({"dep": t['dep'], "cur_word_index": (t['id'] - sentence.start),
"target_word_index": (t['head'] - sentence.start),
"identifier": identifier, "sentence": str(sentence)})
elif object_target in all_entities[i]:
# all_deps = all_deps.join(str(sentence))
identifier = object_here + t['dep'] + object_target
test_list_dict_output.append({"dep": t['dep'], "cur_word_index": (t['id'] - sentence.start),
"target_word_index": (t['head'] - sentence.start),
"identifier": identifier, "sentence": str(sentence)})
else:
continue
# print(f'NOW TEST LIST DICT: {test_list_dict_output}')
return test_list_dict_output
# return all_deps
def is_valid_url(url: str) -> bool:
result = validators.url(url)
if isinstance(result, ValidationFailure):
return False
return True
# Start session
if 'results' not in st.session_state:
st.session_state.results = []
# Page
st.title('Summarization fact checker')
# INTRODUCTION
st.header("Introduction")
st.markdown("""Recent work using transformers on large text corpora has shown great success when fine-tuned on
several different downstream NLP tasks. One such task is that of text summarization. The goal of text summarization
is to generate concise and accurate summaries from input document(s). There are 2 types of summarization: extractive
and abstractive. **Extractive summarization** merely copies informative fragments from the input,
whereas **abstractive summarization** may generate novel words. A good abstractive summary should cover principal
information in the input and has to be linguistically fluent. This blogpost will focus on this more difficult task of
abstractive summary generation.""")
st.markdown("""To generate summaries we will use the [PEGASUS] (https://huggingface.co/google/pegasus-cnn_dailymail)
model, producing abstractive summaries from large articles. These summaries often contain sentences with different
kinds of errors. Rather than improving the core model, we will look into possible post-processing steps to improve
the generated summaries. By comparing contents of the summary with the source text, we come up with a factualness
metric, indicating the trustworthiness of the generated summary. Throughout this blog, we will also explain the
results for some methods on specific examples. These text blocks will be indicated and they change according to the
currently selected article.""")
nlp = get_spacy()
sentence_embedding_model = get_sentence_embedding_model()
tagger = get_flair_tagger()
# GENERATING SUMMARIES PART
st.header("Generating summaries")
st.markdown("Let’s start by selecting an article text for which we want to generate a summary, or you can provide "
"text yourself. Note that it’s suggested to provide a sufficiently large text, as otherwise the summary "
"generated from it might not be optimal, leading to suboptimal performance of the post-processing steps.")
# TODO: NEED TO CHECK ARTICLE TEXT INSTEAD OF ARTICLE NAME ALSO FREE INPUT OPTION
selected_article = st.selectbox('Select an article or provide your own:',
list_all_article_names()) # index=0, format_func=special_internal_function, key=None, help=None, on_change=None, args=None, kwargs=None, *, disabled=False)
st.session_state.article_text = fetch_article_contents(selected_article)
article_text = st.text_area(
label='Full article text',
value=st.session_state.article_text,
height=150
)
st.markdown("Below you can find the generated summary for the article. Based on empirical research, we will discuss "
"two main methods that detect some common errors. We can then score different summaries, to indicate how "
"factual a summary is for a given article. The idea is that in production, you could generate a set of "
"summaries for the same article, with different parameters (or even different models). By using "
"post-processing error detection, we can then select the best possible summary.")
if st.session_state.article_text:
with st.spinner('Generating summary...'):
# classify_comment(article_text, selected_model)
summary_displayed = display_summary(selected_article)
st.write("**Generated summary:**", summary_displayed, unsafe_allow_html=True)
else:
st.error('**Error**: No comment to classify. Please provide a comment.',
help="Generate summary for the given article text")
if is_valid_url(article_text):
print("YES")
else:
print("NO")
def render_svg(svg_file):
with open(svg_file, "r") as f:
lines = f.readlines()
svg = "".join(lines)
# """Renders the given svg string."""
b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
html = r'<img src="data:image/svg+xml;base64,%s"/>' % b64
return html
# ENTITY MATCHING PART
st.header("Entity matching")
st.markdown("The first method we will discuss is called **Named Entity Recognition** (NER). NER is the task of "
"identifying and categorising key information (entities) in text. An entity can be a singular word or a "
"series of words that consistently refers to the same thing. Common entity classes are person names, "
"organisations, locations and so on. By applying NER to both the article and its summary, we can spot "
"possible **hallucinations**. Hallucinations are words generated by the model that are not supported by "
"the source input. In theory all entities in the summary (such as dates, locations and so on), "
"should also be present in the article. Thus we can extract all entities from the summary and compare "
"them to the entities of the original article, spotting potential hallucinations. The more unmatched "
"entities we find, the lower the factualness score of the summary. ")
with st.spinner("Calculating and matching entities..."):
entity_match_html = highlight_entities(selected_article)
st.write(entity_match_html, unsafe_allow_html=True)
red_text = """<font color="black"><span style="background-color: rgb(238, 135, 135); opacity:
1;">red</span></font> """
green_text = """<font color="black">
<span style="background-color: rgb(121, 236, 121); opacity: 1;">green</span>
</font>"""
markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">"
markdown_start_green = "<mark class=\"entity\" style=\"background: rgb(121, 236, 121);\">"
st.markdown("We call this technique “entity matching” and here you can see what this looks like when we apply "
"this method on the summary. Entities in the summary are marked " + green_text + " when the entity "
"also exists in the "
"article, "
"while unmatched "
"entities are "
"marked " +
red_text + ". Several of the example articles and their summaries indicate different errors we find "
"by using this technique. Based on which article you choose, we provide a short "
"explanation of the results below.",
unsafe_allow_html=True)
entity_specific_text = fetch_entity_specific_contents(selected_article)
soup = BeautifulSoup(entity_specific_text, features="html.parser")
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem;
margin-bottom: 2.5rem">{}</div> """
st.write("💡👇 **Specific example explanation** 👇💡", HTML_WRAPPER.format(soup), unsafe_allow_html=True)
# DEPENDENCY PARSING PART
st.header("Dependency comparison")
st.markdown("The second method we use for post-processing is called **Dependency parsing**: the process in which the "
"grammatical structure in a sentence is analysed, to find out related words as well as the type of the "
"relationship between them. For the sentence “Jan’s wife is called Sarah” you would get the following "
"dependency graph:")
# TODO: I wonder why the first doesn't work but the second does (it doesn't show deps otherwise)
# st.image("ExampleParsing.svg")
st.write(render_svg('ExampleParsing.svg'), unsafe_allow_html=True)
st.markdown("Here, “Jan” is the “poss” (possession modifier) of “wife”. If suddenly the summary would read “Jan’s "
"husband…”, there would be a dependency in the summary that is non-existent in the article itself (namely "
"“Jan” is the “poss” of “husband”). However, often new dependencies are introduced in the summary that "
"are still correct. “The borders of Ukraine” have a different dependency between “borders” and “Ukraine” "
"than “Ukraine’s borders”, while both descriptions have the same meaning. So just matching all "
"dependencies between article and summary (as we did with entity matching) would not be a robust method.")
st.markdown("However, by empirical testing, we have found that there are certain dependencies which can be used for "
"such matching techniques. When unmatched, these specific dependencies are often an indication of a "
"wrongly constructed sentence. **Should I explain this more/better or is it enough that I explain by "
"example specific run throughs?**. We found 2(/3 TODO) common dependencies which, when present in the "
"summary but not in the article, are highly indicative of factualness errors. Furthermore, we only check "
"dependencies between an existing **entity** and its direct connections. Below we highlight all unmatched "
"dependencies that satisfy the discussed constraints. We also discuss the specific results for the "
"currently selected article.")
with st.spinner("Doing dependency parsing..."):
summary_deps = check_dependency(False)
article_deps = check_dependency(True)
total_unmatched_deps = []
for summ_dep in summary_deps:
if not any(summ_dep['identifier'] in art_dep['identifier'] for art_dep in article_deps):
total_unmatched_deps.append(summ_dep)
# print(f'ALL UNMATCHED DEPS ARE: {total_unmatched_deps}')
# render_dependency_parsing(check_dependency(False))
if total_unmatched_deps:
for current_drawing_list in total_unmatched_deps:
render_dependency_parsing(current_drawing_list)
dep_specific_text = fetch_dependency_specific_contents(selected_article)
soup = BeautifulSoup(dep_specific_text, features="html.parser")
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem;
margin-bottom: 2.5rem">{}</div> """
st.write("💡👇 **Specific example explanation** 👇💡", HTML_WRAPPER.format(soup), unsafe_allow_html=True)
# OUTRO/CONCLUSION
st.header("Wrapping up")
st.markdown("We have presented 2 methods that try to improve summaries via post-processing steps. Entity matching can "
"be used to solve hallucinations, while dependency comparison can be used to filter out some bad "
"sentences (and thus worse summaries). These methods highlight the possibilities of post-processing "
"AI-made summaries, but are only a basic introduction. As the methods were empirically tested they are "
"definitely not sufficiently robust for general use-cases. (something about that we tested also RE and "
"maybe other things).")
st.markdown("####")
st.markdown("Below we generated 5 different kind of summaries from the article in which their ranks are estimated, "
"and hopefully the best summary (read: the one that a human would prefer or indicate as the best one) "
"will be at the top. TODO: implement this (at the end I think) and also put something in the text with "
"the actual parameters or something? ")
|