import random
from typing import AnyStr
import itertools
import streamlit as st
import torch.nn.parameter
from bs4 import BeautifulSoup
import numpy as np
import base64
from spacy_streamlit.util import get_svg
from custom_renderer import render_sentence_custom
from flair.data import Sentence
from flair.models import SequenceTagger
import spacy
from spacy import displacy
from spacy_streamlit import visualize_parser
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
import os
from transformers_interpret import SequenceClassificationExplainer
# Map model names to URLs
model_names_to_URLs = {
'ml6team/distilbert-base-dutch-cased-toxic-comments':
'https://huggingface.co/ml6team/distilbert-base-dutch-cased-toxic-comments',
'ml6team/robbert-dutch-base-toxic-comments':
'https://huggingface.co/ml6team/robbert-dutch-base-toxic-comments',
}
about_page_markdown = f"""# 🤬 Dutch Toxic Comment Detection Space
Made by [ML6](https://ml6.eu/).
Token attribution is performed using [transformers-interpret](https://github.com/cdpierse/transformers-interpret).
"""
regular_emojis = [
'😐', '🙂', '👶', '😇',
]
undecided_emojis = [
'🤨', '🧐', '🥸', '🥴', '🤷',
]
potty_mouth_emojis = [
'🤐', '👿', '😡', '🤬', '☠️', '☣️', '☢️',
]
# Page setup
st.set_page_config(
page_title="Post-processing summarization fact checker",
page_icon="",
layout="centered",
initial_sidebar_state="auto",
menu_items={
'Get help': None,
'Report a bug': None,
'About': about_page_markdown,
}
)
# Model setup
@st.cache(allow_output_mutation=True,
suppress_st_warning=True,
show_spinner=False)
def load_pipeline(model_name):
with st.spinner('Loading model (this might take a while)...'):
toxicity_pipeline = pipeline(
'text-classification',
model=model_name,
tokenizer=model_name)
cls_explainer = SequenceClassificationExplainer(
toxicity_pipeline.model,
toxicity_pipeline.tokenizer)
return toxicity_pipeline, cls_explainer
# Auxiliary functions
def format_explainer_html(html_string):
"""Extract tokens with attribution-based background color."""
inside_token_prefix = '##'
soup = BeautifulSoup(html_string, 'html.parser')
p = soup.new_tag('p',
attrs={'style': 'color: black; background-color: white;'})
# Select token elements and remove model specific tokens
current_word = None
for token in soup.find_all('td')[-1].find_all('mark')[1:-1]:
text = token.font.text.strip()
if text.startswith(inside_token_prefix):
text = text[len(inside_token_prefix):]
else:
# Create a new span for each word (sequence of sub-tokens)
if current_word is not None:
p.append(current_word)
p.append(' ')
current_word = soup.new_tag('span')
token.string = text
token.attrs['style'] = f"{token.attrs['style']}; padding: 0.2em 0em;"
current_word.append(token)
# Add last word
p.append(current_word)
# Add left and right-padding to each word
for span in p.find_all('span'):
span.find_all('mark')[0].attrs['style'] = (
f"{span.find_all('mark')[0].attrs['style']}; padding-left: 0.2em;")
span.find_all('mark')[-1].attrs['style'] = (
f"{span.find_all('mark')[-1].attrs['style']}; padding-right: 0.2em;")
return p
def list_all_article_names() -> list:
filenames = []
for file in sorted(os.listdir('./sample-articles/')):
if file.endswith('.txt'):
filenames.append(file.replace('.txt', ''))
return filenames
def fetch_article_contents(filename: str) -> AnyStr:
with open(f'./sample-articles/{filename.lower()}.txt', 'r') as f:
data = f.read()
return data
def fetch_summary_contents(filename: str) -> AnyStr:
with open(f'./sample-summaries/{filename.lower()}.txt', 'r') as f:
data = f.read()
return data
def classify_comment(comment, selected_model):
"""Classify the given comment and augment with additional information."""
toxicity_pipeline, cls_explainer = load_pipeline(selected_model)
result = toxicity_pipeline(comment)[0]
result['model_name'] = selected_model
# Add explanation
result['word_attribution'] = cls_explainer(comment, class_name="non-toxic")
result['visualitsation_html'] = cls_explainer.visualize()._repr_html_()
result['tokens_with_background'] = format_explainer_html(
result['visualitsation_html'])
# Choose emoji reaction
label, score = result['label'], result['score']
if label == 'toxic' and score > 0.1:
emoji = random.choice(potty_mouth_emojis)
elif label in ['non_toxic', 'non-toxic'] and score > 0.1:
emoji = random.choice(regular_emojis)
else:
emoji = random.choice(undecided_emojis)
result.update({'text': comment, 'emoji': emoji})
# Add result to session
st.session_state.results.append(result)
def display_summary(article_name: str):
summary_content = fetch_summary_contents(article_name)
soup = BeautifulSoup(summary_content, features="html.parser")
HTML_WRAPPER = """
{}
"""
st.session_state.summary_output = HTML_WRAPPER.format(soup)
##@st.cache(hash_funcs={preshed.maps.PreshMap: my_hash_func})
def get_spacy():
nlp = spacy.load('en_core_web_lg')
return nlp
# TODO: check the output mutation thingy
@st.cache(hash_funcs={torch.nn.parameter.Parameter: lambda _: None}, allow_output_mutation=True)
def get_flair_tagger():
tagger = SequenceTagger.load("flair/ner-english-ontonotes-fast")
return tagger
def get_all_entities_per_sentence(text):
# load all NER models
nlp = get_spacy()
tagger = get_flair_tagger()
doc = nlp(text)
sentences = list(doc.sents)
entities_all_sentences = []
for sentence in sentences:
entities_this_sentence = []
# SPACY ENTITIES
for entity in sentence.ents:
entities_this_sentence.append(str(entity))
# FLAIR ENTITIES
sentence_entities = Sentence(str(sentence))
tagger.predict(sentence_entities)
for entity in sentence_entities.get_spans('ner'):
entities_this_sentence.append(entity.text)
entities_all_sentences.append(entities_this_sentence)
return entities_all_sentences
def get_all_entities(text):
all_entities_per_sentence = get_all_entities_per_sentence(text)
return list(itertools.chain.from_iterable(all_entities_per_sentence))
# TODO: this functionality can be cached (e.g. by storing html file output) if wanted (or just store list of entities idk)
def get_and_compare_entities(article_name: str):
article_content = fetch_article_contents(article_name)
all_entities_per_sentence = get_all_entities_per_sentence(article_content)
#st.session_state.entities_per_sentence_article = all_entities_per_sentence
entities_article = list(itertools.chain.from_iterable(all_entities_per_sentence))
summary_content = fetch_summary_contents(article_name)
all_entities_per_sentence = get_all_entities_per_sentence(summary_content)
#st.session_state.entities_per_sentence_summary = all_entities_per_sentence
entities_summary = list(itertools.chain.from_iterable(all_entities_per_sentence))
matched_entities = []
unmatched_entities = []
for entity in entities_summary:
# TODO: currently substring matching but probably should do embedding method or idk?
if any(entity.lower() in substring_entity.lower() for substring_entity in entities_article):
matched_entities.append(entity)
else:
unmatched_entities.append(entity)
return matched_entities, unmatched_entities
def highlight_entities(article_name: str):
summary_content = fetch_summary_contents(article_name)
markdown_start_red = ""
markdown_start_green = ""
markdown_end = ""
matched_entities, unmatched_entities = get_and_compare_entities(article_name)
for entity in matched_entities:
summary_content = summary_content.replace(entity, markdown_start_green + entity + markdown_end)
for entity in unmatched_entities:
summary_content = summary_content.replace(entity, markdown_start_red + entity + markdown_end)
soup = BeautifulSoup(summary_content, features="html.parser")
HTML_WRAPPER = """{}
"""
return HTML_WRAPPER.format(soup)
def render_dependency_parsing(text: str):
html = render_sentence_custom(text)
html = html.replace("\n\n", "\n")
st.write(get_svg(html), unsafe_allow_html=True)
# If deps for article: True, otherwise deps for summary calc
def check_dependency(article: bool):
nlp = spacy.load('en_core_web_lg')
if article:
text = st.session_state.article_text
all_entities = get_all_entities_per_sentence(text)
#all_entities = st.session_state.entities_per_sentence_article
else:
text = st.session_state.summary_output
all_entities = get_all_entities_per_sentence(text)
#all_entities = st.session_state.entities_per_sentence_summary
doc = nlp(text)
tok_l = doc.to_json()['tokens']
all_deps = ""
print(str(all_deps))
print("OOPS")
sentences = list(doc.sents)
print(sentences)
for i, sentence in enumerate(sentences):
#TODO MONDAY: THE PROBLEM LIES HERE WITH THE SENTENCE!!! (I THINK I KNOW PROBLEM: TEXT SAVED AS SESSION STATE IS HTML NOT PURE TEXT!)
print(str(sentence))
start_id = sentence.start
end_id = sentence.end
for t in tok_l:
if t["id"] < start_id or t["id"] > end_id:
continue
head = tok_l[t['head']]
if t['dep'] == 'amod':
print("AMOD FOUND")
object_here = text[t['start']:t['end']]
object_target = text[head['start']:head['end']]
# ONE NEEDS TO BE ENTITY
if object_here in all_entities[i]:
print("SENTENCE ADDED")
print(all_deps)
all_deps = all_deps.join(str(sentence))
elif object_target in all_entities[i]:
all_deps = all_deps.join(str(sentence))
else:
continue
#print(f'all depps are {all_deps}')
#print(all_deps)
return all_deps
# Start session
if 'results' not in st.session_state:
st.session_state.results = []
# Page
st.title('Summarization fact checker')
# INTRODUCTION
st.header("Introduction")
st.markdown("""Recent work using transformers on large text corpora has shown great succes when fine-tuned on several
different downstream NLP tasks. One such task is that of text summarization. The goal of text summarization is to
generate concise and accurate summaries from input document(s). There are 2 types of summarization: extractive and
abstractive. **Exstractive summarization** merely copies informative fragments from the input, whereas **abstractive
summarization** may generate novel words. A good abstractive summary should cover principal information in the input
and has to be linguistically fluent. This blogpost will focus on this more difficult task of abstractive summary
generation.""")
st.markdown("""To generate summaries we will use the [PEGASUS] (https://huggingface.co/google/pegasus-cnn_dailymail)
model, producing abstractive summaries from large articles. These summaries often still contain sentences with
different kinds of errors. Rather than improving the core model, we will look at possible post-processing steps to
improve the generated summaries by detecting such possible errors. By comparing contents of the summary with the
source text, we can create some sort of factualness metric, indicating the trustworthiness of the generated
summary.""")
# GENERATING SUMMARIES PART
st.header("Generating summaries")
st.markdown("Let’s start by selecting an article text for which we want to generate a summary, or you can provide "
"text yourself. Note that it’s suggested to provide a sufficiently large text, as otherwise the summary "
"generated might not be optimal to start from.")
# TODO: NEED TO CHECK ARTICLE TEXT INSTEAD OF ARTICLE NAME ALSO FREE INPUT OPTION
selected_article = st.selectbox('Select an article or provide your own:',
list_all_article_names()) # index=0, format_func=special_internal_function, key=None, help=None, on_change=None, args=None, kwargs=None, *, disabled=False)
st.session_state.article_text = fetch_article_contents(selected_article)
article_text = st.text_area(
label='Full article text',
value=st.session_state.article_text,
height=150
)
st.markdown("Below you can find the generated summary for the article. The summaries of the example articles "
"vary in quality, but are chosen as such. Based on some common errors, we will discuss possible "
"methods to improve or rank the summaries in the following paragraphs. The idea is that in "
"production, you could generate a set of summaries for the same article, with different "
"parameters (or even different models). By using post-processing methods and metrics, "
"we can detect some errors in summaries, and choose the best one to actually use.")
if st.session_state.article_text:
with st.spinner('Generating summary...'):
# classify_comment(article_text, selected_model)
display_summary(selected_article)
st.write("**Generated summary:**", st.session_state.summary_output, unsafe_allow_html=True)
else:
st.error('**Error**: No comment to classify. Please provide a comment.',
help="Generate summary for the given article text")
# ENTITY MATCHING PART
st.header("Entity matching")
st.markdown("**Named entity recognition** (NER) is the task of identifying and categorising key information ("
"entities) in text. An entity can be a singular word or a series of words that consistently refers to the "
"same thing. Common entity classes are person names, organisations, locations and so on. By applying NER "
"to both the article and its summary, we can spot possible **hallucinations**. Hallucinations are words "
"generated by the model that are not supported by the source input. ")
with st.spinner("Calculating and matching entities..."):
entity_match_html = highlight_entities(selected_article)
st.write(entity_match_html, unsafe_allow_html=True)
# DEPENDENCY PARSING PART
st.header("Dependency comparison")
with st.spinner("Doing dependency parsing..."):
render_dependency_parsing(check_dependency(False))
# Results
# if 'results' in st.session_state and st.session_state.results:
# first = True
# for result in st.session_state.results[::-1]:
# if not first:
# st.markdown("---")
# st.markdown(f"Text:\n> {result['text']}")
# col_1, col_2, col_3 = st.columns([1,2,2])
# col_1.metric(label='', value=f"{result['emoji']}")
# col_2.metric(label='Label', value=f"{result['label']}")
# col_3.metric(label='Score', value=f"{result['score']:.3f}")
# st.markdown(f"Token Attribution:\n{result['tokens_with_background']}",
# unsafe_allow_html=True)
# st.caption(f"Model: {result['model_name']}")
# first = False