File size: 2,953 Bytes
05be506
 
 
 
 
09cfa96
d7f0ed6
 
3757fc9
 
d7f0ed6
 
 
 
09cfa96
 
05be506
 
 
 
 
e875883
 
724bf24
 
419acb5
 
 
 
724bf24
cea42fe
 
 
05be506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5bd6a6
 
 
 
 
 
 
 
 
cea42fe
05be506
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
import gradio as gr
from datasets import load_dataset

auth_token = os.environ.get("auth_token")
visit_bench_all = load_dataset("mlfoundations/VisIT-Bench", use_auth_token=auth_token)
print('visit_bench_all')
print(visit_bench_all)
print('dataset keys:')
print(visit_bench_all.keys())
dataset_keys = list(visit_bench_all.keys())
assert len(dataset_keys) == 1
dataset_key = dataset_keys[0]
visit_bench = visit_bench_all[dataset_key]
print('first item:')
print(visit_bench[0])

df = visit_bench.to_pandas()
print(f"Got {len(df)} items in dataframe")
df = df.sample(frac=1)

# df['image'] = df['image_url'].apply(lambda x: '<a href= "' + str(x) + '" target="_blank"> <img src= "' + str(
    # x) + '"/> </a>')
# df['image'] = df['image_url'].apply(lambda x: '<a href= "' + str(x) + '" target="_blank"> <img src= "' + str(
#     x) + '" width="400"/> </a>')
# df['image'] = df['image'].apply(lambda x: '<a href= "' + str(x) + '" target="_blank"> <img src= "' + str(
#     x) + '" width="400"/> </a>')
df['image'] = df['image'].apply(lambda x: '<a href= "' + str(x['path']) + '" target="_blank"> <img src= "' + str(
    x['path']) + '" width="400"/> </a>')

cols = list(df.columns)
cols.insert(0, cols.pop(cols.index('image')))
df = df.reindex(columns=cols)
LINES_NUMBER = 20

def display_df():
    df_images = df.head(LINES_NUMBER)
    return df_images

def display_next(dataframe, end):
    start = int(end or len(dataframe))
    end = int(start) + int(LINES_NUMBER)
    global df
    if end >= len(df) - 1:
        start = 0
        end = LINES_NUMBER
        df = df.sample(frac=1)
        print(f"Shuffle")
    df_images = df.iloc[start:end]
    assert len(df_images) == LINES_NUMBER
    return df_images, end

initial_dataframe = display_df()

# Gradio Blocks
with gr.Blocks() as demo:
    gr.Markdown("<h1><center>VisIT-Bench Dataset Viewer</center></h1>")

    with gr.Row():
        num_end = gr.Number(visible=False)
        b1 = gr.Button("Get Initial dataframe")
        b2 = gr.Button("Next Rows")

    with gr.Row():
        # out_dataframe = gr.Dataframe(initial_dataframe, wrap=True, max_rows=LINES_NUMBER, overflow_row_behaviour="paginate",
        #                              interactive=False,
        #                              datatype=["markdown", "str", "str", "str", "bool", 
        #                                        "bool", "bool", "str", "str", "str"])
        out_dataframe = gr.Dataframe(initial_dataframe, wrap=True, row_count=LINES_NUMBER,
                             interactive=False,
                             datatype=["markdown", "str", "str", "str", "bool",
                                       "bool", "bool", "str", "str", "str"])



    b1.click(fn=display_df, outputs=out_dataframe, api_name="initial_dataframe")
    b2.click(fn=display_next, inputs=[out_dataframe, num_end], outputs=[out_dataframe, num_end],
             api_name="next_rows")

demo.launch(debug=True, show_error=True)