mlkorra commited on
Commit
5a2a0f4
·
1 Parent(s): a4ace7e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -8
app.py CHANGED
@@ -22,15 +22,13 @@ def visualize(text):
22
  @st.cache
23
  def load_model(text):
24
 
25
-
26
  checkpoint = 'mlkorra/OGBV-gender-bert-hi-en'
27
 
28
  tokenizer = AutoTokenizer.from_pretrained(checkpoint)
29
  model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
30
 
31
  nlp = pipeline('sentiment-analysis',model=model,tokenizer=tokenizer)
32
-
33
-
34
  results = nlp(text)
35
 
36
  return results
@@ -42,11 +40,20 @@ def load_model(text):
42
  import re
43
  def app():
44
  st.title("OGBV-BERT")
45
-
46
- target_text_path = "./input/tweet_list.csv"
47
- target_text_df = pd.read_csv(target_text_path)
48
- texts = target_text_df["text"]
49
- ##st.sidebar.title("Place")
 
 
 
 
 
 
 
 
 
50
 
51
  pick_random = st.sidebar.checkbox("Pick any random text")
52
 
 
22
  @st.cache
23
  def load_model(text):
24
 
 
25
  checkpoint = 'mlkorra/OGBV-gender-bert-hi-en'
26
 
27
  tokenizer = AutoTokenizer.from_pretrained(checkpoint)
28
  model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
29
 
30
  nlp = pipeline('sentiment-analysis',model=model,tokenizer=tokenizer)
31
+
 
32
  results = nlp(text)
33
 
34
  return results
 
40
  import re
41
  def app():
42
  st.title("OGBV-BERT")
43
+
44
+ data = st.sidebar.radio("Pick the evaluation data :",('Twitter','Trac2020'))
45
+
46
+ if data=="Twitter":
47
+
48
+ target_text_path = "./input/tweet_list.csv"
49
+ target_text_df = pd.read_csv(target_text_path)
50
+ texts = target_text_df["text"]
51
+
52
+ else:
53
+
54
+ target_text_path = "./input/trac2_hin_test.csv"
55
+ target_text_df = pd.read_csv(target_text_path)
56
+ texts = target_text_df["Text"]
57
 
58
  pick_random = st.sidebar.checkbox("Pick any random text")
59