Spaces:
Sleeping
Sleeping
Add app, utils classifier
Browse files- app.py +18 -0
- assets/style.css +80 -0
- utils/util_classifier.py +264 -0
app.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
def main():
|
4 |
+
|
5 |
+
st.set_page_config(
|
6 |
+
page_title="ConstructAI",
|
7 |
+
page_icon="🏗️",
|
8 |
+
layout="wide"
|
9 |
+
)
|
10 |
+
|
11 |
+
home_page = st.Page("pages/Home.py",icon="🏠")
|
12 |
+
classifier_page = st.Page('pages/Classifier.py',title='Classifier',icon="🛠️")
|
13 |
+
project_wiki_page = st.Page('pages/Project_Wiki.py',title = 'Project Wiki', icon=":material/dashboard:")
|
14 |
+
pg = st.navigation([home_page, classifier_page, project_wiki_page])
|
15 |
+
pg.run()
|
16 |
+
|
17 |
+
if __name__ == "__main__":
|
18 |
+
main()
|
assets/style.css
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* General Styles */
|
2 |
+
.stButton>button {
|
3 |
+
background-color: #4CAF50;
|
4 |
+
color: white;
|
5 |
+
padding: 0.5rem 1rem;
|
6 |
+
border-radius: 5px;
|
7 |
+
border: none;
|
8 |
+
transition: all 0.3s;
|
9 |
+
}
|
10 |
+
|
11 |
+
.stButton>button:hover {
|
12 |
+
background-color: #45a049;
|
13 |
+
transform: translateY(-2px);
|
14 |
+
}
|
15 |
+
|
16 |
+
/* Hero Section */
|
17 |
+
.hero-section {
|
18 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
19 |
+
padding: 2rem;
|
20 |
+
border-radius: 10px;
|
21 |
+
margin: 2rem 0;
|
22 |
+
text-align: center;
|
23 |
+
}
|
24 |
+
|
25 |
+
/* Feature Cards */
|
26 |
+
.feature-card {
|
27 |
+
background: white;
|
28 |
+
padding: 1.5rem;
|
29 |
+
border-radius: 8px;
|
30 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
31 |
+
margin: 1rem 0;
|
32 |
+
text-align: center;
|
33 |
+
}
|
34 |
+
|
35 |
+
/* Results Display */
|
36 |
+
.confidence-meter {
|
37 |
+
background: #f0f0f0;
|
38 |
+
border-radius: 10px;
|
39 |
+
height: 20px;
|
40 |
+
position: relative;
|
41 |
+
margin: 1rem 0;
|
42 |
+
}
|
43 |
+
|
44 |
+
.meter-fill {
|
45 |
+
background: linear-gradient(90deg, #4CAF50, #45a049);
|
46 |
+
height: 100%;
|
47 |
+
border-radius: 10px;
|
48 |
+
transition: width 0.5s ease-in-out;
|
49 |
+
}
|
50 |
+
|
51 |
+
.result-card {
|
52 |
+
background: white;
|
53 |
+
padding: 1.5rem;
|
54 |
+
border-radius: 8px;
|
55 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
56 |
+
margin: 1rem 0;
|
57 |
+
text-align: center;
|
58 |
+
}
|
59 |
+
|
60 |
+
/* Probability Bars */
|
61 |
+
.prob-bar {
|
62 |
+
display: flex;
|
63 |
+
align-items: center;
|
64 |
+
margin: 0.5rem 0;
|
65 |
+
}
|
66 |
+
|
67 |
+
.bar {
|
68 |
+
flex-grow: 1;
|
69 |
+
height: 20px;
|
70 |
+
background: #f0f0f0;
|
71 |
+
margin: 0 1rem;
|
72 |
+
border-radius: 10px;
|
73 |
+
overflow: hidden;
|
74 |
+
}
|
75 |
+
|
76 |
+
.fill {
|
77 |
+
height: 100%;
|
78 |
+
background: #4CAF50;
|
79 |
+
transition: width 0.5s ease-in-out;
|
80 |
+
}
|
utils/util_classifier.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
+
import joblib
|
6 |
+
import pandas as pd
|
7 |
+
from datetime import datetime
|
8 |
+
import logging
|
9 |
+
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
class TextClassificationPipeline:
|
14 |
+
def __init__(self, model_path='./models', method='bertbased'):
|
15 |
+
"""
|
16 |
+
Initialize the classification pipeline
|
17 |
+
Args:
|
18 |
+
model_path: Path to saved models
|
19 |
+
method: 'bertbased' or 'baseline'
|
20 |
+
"""
|
21 |
+
try:
|
22 |
+
self.method = method
|
23 |
+
|
24 |
+
if method == 'bertbased':
|
25 |
+
logger.info("Loading BERT model...")
|
26 |
+
self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
27 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(f"{model_path}/bert-model")
|
28 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
29 |
+
self.model.to(self.device)
|
30 |
+
self.model.eval()
|
31 |
+
logger.info(f"BERT model loaded successfully. Using device: {self.device}")
|
32 |
+
else:
|
33 |
+
logger.info("Loading baseline model...")
|
34 |
+
self.tfidf = joblib.load(f"{model_path}/baseline-model/tfidf_vectorizer.pkl")
|
35 |
+
self.baseline_model = joblib.load(f"{model_path}/baseline-model/baseline_model.pkl")
|
36 |
+
logger.info("Baseline model loaded successfully")
|
37 |
+
|
38 |
+
# Load label encoder for both methods
|
39 |
+
self.label_encoder = joblib.load(f"{model_path}/label_encoder.pkl")
|
40 |
+
|
41 |
+
except Exception as e:
|
42 |
+
logger.error(f"Error initializing model: {str(e)}")
|
43 |
+
raise
|
44 |
+
|
45 |
+
# def preprocess_text(self, text):
|
46 |
+
# """Clean and preprocess text"""
|
47 |
+
# if isinstance(text, str):
|
48 |
+
# # Basic cleaning
|
49 |
+
# text = text.strip()
|
50 |
+
# text = ' '.join(text.split()) # Remove extra whitespace
|
51 |
+
# return text
|
52 |
+
# return text
|
53 |
+
def preprocess_text(self, text):
|
54 |
+
"""Clean and preprocess text"""
|
55 |
+
if isinstance(text, str):
|
56 |
+
# Basic cleaning
|
57 |
+
text = text.strip()
|
58 |
+
text = ' '.join(text.split()) # Remove extra whitespace
|
59 |
+
# Capitalize first letter to match training data format
|
60 |
+
text = text.title() # This will capitalize first letter of each word
|
61 |
+
return text
|
62 |
+
return text
|
63 |
+
|
64 |
+
def preprocess(self, text):
|
65 |
+
"""
|
66 |
+
Preprocess the input text based on method
|
67 |
+
"""
|
68 |
+
try:
|
69 |
+
# Clean text first
|
70 |
+
text = self.preprocess_text(text)
|
71 |
+
|
72 |
+
if self.method == 'bertbased':
|
73 |
+
# BERT preprocessing
|
74 |
+
encodings = self.tokenizer(
|
75 |
+
text,
|
76 |
+
truncation=True,
|
77 |
+
padding=True,
|
78 |
+
max_length=512,
|
79 |
+
return_tensors='pt'
|
80 |
+
)
|
81 |
+
encodings = {k: v.to(self.device) for k, v in encodings.items()}
|
82 |
+
return encodings
|
83 |
+
else:
|
84 |
+
# Baseline preprocessing
|
85 |
+
return self.tfidf.transform([text] if isinstance(text, str) else text)
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
logger.error(f"Error in preprocessing: {str(e)}")
|
89 |
+
raise
|
90 |
+
|
91 |
+
def predict(self, text, return_probability=False):
|
92 |
+
"""
|
93 |
+
Predict using either BERT or baseline model
|
94 |
+
Args:
|
95 |
+
text: Input text or list of texts
|
96 |
+
return_probability: Whether to return probability scores
|
97 |
+
Returns:
|
98 |
+
Predictions with metadata
|
99 |
+
"""
|
100 |
+
try:
|
101 |
+
# Handle both single string and list of strings
|
102 |
+
if isinstance(text, str):
|
103 |
+
text = [text]
|
104 |
+
|
105 |
+
# Preprocess
|
106 |
+
inputs = self.preprocess(text)
|
107 |
+
|
108 |
+
if self.method == 'bertbased':
|
109 |
+
# BERT predictions
|
110 |
+
with torch.no_grad():
|
111 |
+
outputs = self.model(**inputs)
|
112 |
+
probabilities = torch.softmax(outputs.logits, dim=-1)
|
113 |
+
predictions = torch.argmax(probabilities, dim=-1)
|
114 |
+
|
115 |
+
predictions = predictions.cpu().numpy()
|
116 |
+
probabilities = probabilities.cpu().numpy()
|
117 |
+
|
118 |
+
else:
|
119 |
+
# Baseline predictions
|
120 |
+
predictions = self.baseline_model.predict(inputs)
|
121 |
+
probabilities = self.baseline_model.predict_proba(inputs)
|
122 |
+
|
123 |
+
# Convert numeric predictions to original labels
|
124 |
+
predicted_labels = self.label_encoder.inverse_transform(predictions)
|
125 |
+
|
126 |
+
# Ensure consistent casing with training data
|
127 |
+
predicted_labels = [label.title() for label in predicted_labels]
|
128 |
+
|
129 |
+
if return_probability:
|
130 |
+
results = []
|
131 |
+
for t, label, prob, probs in zip(text, predicted_labels,
|
132 |
+
probabilities.max(axis=1),
|
133 |
+
probabilities):
|
134 |
+
result = {
|
135 |
+
'text': t[:200] + '...' if len(t) > 200 else t,
|
136 |
+
'predicted_label': label.title(), # Ensure consistent casing
|
137 |
+
'confidence': float(prob),
|
138 |
+
'model_type': self.method,
|
139 |
+
'probabilities': {
|
140 |
+
self.label_encoder.inverse_transform([i])[0].title(): float(p) # Consistent casing
|
141 |
+
for i, p in enumerate(probs)
|
142 |
+
},
|
143 |
+
# ... rest of the result dictionary ...
|
144 |
+
}
|
145 |
+
results.append(result)
|
146 |
+
|
147 |
+
return results[0] if len(text) == 1 else results
|
148 |
+
|
149 |
+
return predicted_labels[0] if len(text) == 1 else predicted_labels
|
150 |
+
|
151 |
+
except Exception as e:
|
152 |
+
logger.error(f"Error in prediction: {str(e)}")
|
153 |
+
raise
|
154 |
+
|
155 |
+
def predict_old(self, text, return_probability=False):
|
156 |
+
"""
|
157 |
+
Predict using either BERT or baseline model
|
158 |
+
Args:
|
159 |
+
text: Input text or list of texts
|
160 |
+
return_probability: Whether to return probability scores
|
161 |
+
Returns:
|
162 |
+
Predictions with metadata
|
163 |
+
"""
|
164 |
+
try:
|
165 |
+
# Handle both single string and list of strings
|
166 |
+
if isinstance(text, str):
|
167 |
+
text = [text]
|
168 |
+
|
169 |
+
# Preprocess
|
170 |
+
inputs = self.preprocess(text)
|
171 |
+
|
172 |
+
if self.method == 'bertbased':
|
173 |
+
# BERT predictions
|
174 |
+
with torch.no_grad():
|
175 |
+
outputs = self.model(**inputs)
|
176 |
+
probabilities = torch.softmax(outputs.logits, dim=-1)
|
177 |
+
predictions = torch.argmax(probabilities, dim=-1)
|
178 |
+
|
179 |
+
predictions = predictions.cpu().numpy()
|
180 |
+
probabilities = probabilities.cpu().numpy()
|
181 |
+
|
182 |
+
else:
|
183 |
+
# Baseline predictions
|
184 |
+
predictions = self.baseline_model.predict(inputs)
|
185 |
+
probabilities = self.baseline_model.predict_proba(inputs)
|
186 |
+
|
187 |
+
# Convert numeric predictions to original labels
|
188 |
+
predicted_labels = self.label_encoder.inverse_transform(predictions)
|
189 |
+
|
190 |
+
if return_probability:
|
191 |
+
results = []
|
192 |
+
for t, label, prob, probs in zip(text, predicted_labels,
|
193 |
+
probabilities.max(axis=1),
|
194 |
+
probabilities):
|
195 |
+
# Create detailed result dictionary
|
196 |
+
result = {
|
197 |
+
'text': t[:200] + '...' if len(t) > 200 else t, # Truncate long text
|
198 |
+
'predicted_label': label,
|
199 |
+
'confidence': float(prob),
|
200 |
+
'model_type': self.method,
|
201 |
+
'probabilities': {
|
202 |
+
self.label_encoder.inverse_transform([i])[0]: float(p)
|
203 |
+
for i, p in enumerate(probs)
|
204 |
+
},
|
205 |
+
'timestamp': datetime.now().isoformat(),
|
206 |
+
'metadata': {
|
207 |
+
'model_name': 'BERT' if self.method == 'bertbased' else 'Baseline',
|
208 |
+
'text_length': len(t),
|
209 |
+
'preprocessing_steps': ['cleaning', 'tokenization']
|
210 |
+
}
|
211 |
+
}
|
212 |
+
results.append(result)
|
213 |
+
|
214 |
+
return results[0] if len(text) == 1 else results
|
215 |
+
|
216 |
+
return predicted_labels[0] if len(text) == 1 else predicted_labels
|
217 |
+
|
218 |
+
except Exception as e:
|
219 |
+
logger.error(f"Error in prediction: {str(e)}")
|
220 |
+
raise
|
221 |
+
|
222 |
+
def get_model_info(self):
|
223 |
+
"""Return model information"""
|
224 |
+
return {
|
225 |
+
'model_type': self.method,
|
226 |
+
'model_name': 'BERT' if self.method == 'bertbased' else 'Baseline',
|
227 |
+
'device': str(self.device) if self.method == 'bertbased' else 'CPU',
|
228 |
+
'max_sequence_length': 512 if self.method == 'bertbased' else None,
|
229 |
+
'number_of_classes': len(self.label_encoder.classes_),
|
230 |
+
'classes': list(self.label_encoder.classes_)
|
231 |
+
}
|
232 |
+
|
233 |
+
def load_and_process_pdf(url_or_file):
|
234 |
+
"""
|
235 |
+
Load and process PDF from URL or file
|
236 |
+
Returns extracted text
|
237 |
+
"""
|
238 |
+
try:
|
239 |
+
# Your PDF processing code here
|
240 |
+
# Return extracted text
|
241 |
+
pass
|
242 |
+
except Exception as e:
|
243 |
+
logger.error(f"Error processing PDF: {str(e)}")
|
244 |
+
raise
|
245 |
+
|
246 |
+
# Example usage
|
247 |
+
if __name__ == "__main__":
|
248 |
+
# Test the pipeline
|
249 |
+
classifier = TextClassificationPipeline()
|
250 |
+
|
251 |
+
# Test single prediction
|
252 |
+
text = "Example construction document text"
|
253 |
+
result = classifier.predict(text, return_probability=True)
|
254 |
+
print("\nSingle Prediction Result:")
|
255 |
+
print(result)
|
256 |
+
|
257 |
+
# Test batch prediction
|
258 |
+
texts = ["First document", "Second document"]
|
259 |
+
results = classifier.predict(texts, return_probability=True)
|
260 |
+
print("\nBatch Prediction Results:")
|
261 |
+
for result in results:
|
262 |
+
print(f"\nText: {result['text']}")
|
263 |
+
print(f"Prediction: {result['predicted_label']}")
|
264 |
+
print(f"Confidence: {result['confidence']:.4f}")
|