import gradio as gr import whisper from whisper.utils import write_vtt from pytube import YouTube import os import sys import subprocess import re loaded_model = whisper.load_model("base") current_size = 'base' def download_video(link): yt = YouTube(link) vid = yt.thumbnail_url.split('vi/')[1].split('/')[0] print(vid) return yt.streams.filter(file_extension='mp4')[0].download(filename=f"{vid}.mp4") def inference(link): yt = YouTube(link) vid = yt.thumbnail_url.split('vi/')[1].split('/')[0] audio_path = yt.streams.filter(only_audio=True)[0].download(filename= f"{vid}.mp3") print(f'audio path : {audio_path}') video_path = download_video(link) #video_path = yt.streams.filter(file_extension='mp4')[0].download(filename='video.mp4' options = dict(beam_size=5, best_of=5, fp16 = False) translate_options = dict(task="translate", **options) results = loaded_model.transcribe(audio_path,**translate_options) output_dir = '' path = audio_path.split(".")[0] with open(os.path.join(output_dir, path + ".vtt"), "w") as vtt: write_vtt(results["segments"], file=vtt) subtitle = path + ".vtt" output_video = path + "_subtitled.mp4" try: os.system(f"ffmpeg -i {video_path} -vf subtitles={subtitle} {output_video}") except Exception as exc: print(f'system Error : {exc}') return output_video def change_model(size): if size == current_size: return loaded_model = whisper.load_model(size) current_size = size def populate_metadata(link): yt = YouTube(link) return yt.thumbnail_url, yt.title title="Youtube Caption Generator" description="Generate captions of Youtube videos using OpenAI's Whisper" block = gr.Blocks() with block: gr.HTML( """
Generate captions of Youtube videos using OpenAI's Whisper