Spaces:
Sleeping
Sleeping
Compatibility to ZERO
Browse files- npc_bert_models/cls_module.py +9 -1
- npc_bert_models/mlm_module.py +8 -1
- npc_bert_models/summary_module.py +19 -1
- requirements.txt +3 -1
npc_bert_models/cls_module.py
CHANGED
@@ -1,7 +1,9 @@
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
from transformers import pipeline as hf_pipeline
|
3 |
from pathlib import Path
|
4 |
from typing import Any, Dict
|
|
|
5 |
from .app_logger import get_logger
|
6 |
|
7 |
class NpcBertCLS():
|
@@ -46,8 +48,14 @@ class NpcBertCLS():
|
|
46 |
|
47 |
self.model = AutoModelForSequenceClassification.from_pretrained(self.pretrained_model)
|
48 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
51 |
def __call__(self, *args: Any) -> Any:
|
52 |
"""Performs classification on the given reports.
|
53 |
|
|
|
1 |
+
import spaces.zero
|
2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
from transformers import pipeline as hf_pipeline
|
4 |
from pathlib import Path
|
5 |
from typing import Any, Dict
|
6 |
+
import spaces
|
7 |
from .app_logger import get_logger
|
8 |
|
9 |
class NpcBertCLS():
|
|
|
48 |
|
49 |
self.model = AutoModelForSequenceClassification.from_pretrained(self.pretrained_model)
|
50 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
51 |
+
try:
|
52 |
+
self.pipeline = hf_pipeline("text-classification", model=self.model, tokenizer=self.tokenizer, device='cuda')
|
53 |
+
except Exception as e:
|
54 |
+
self.pipeline = hf_pipeline("text-classification", model=self.model, tokenizer=self.tokenizer, device='cpu')
|
55 |
+
self.logger.warning("No GPU!")
|
56 |
+
self.logger.exception(e)
|
57 |
|
58 |
+
@spaces.GPU
|
59 |
def __call__(self, *args: Any) -> Any:
|
60 |
"""Performs classification on the given reports.
|
61 |
|
npc_bert_models/mlm_module.py
CHANGED
@@ -2,6 +2,7 @@ from transformers import AutoTokenizer, AutoModelForMaskedLM
|
|
2 |
from transformers import pipeline as hf_pipeline
|
3 |
from pathlib import Path
|
4 |
from .app_logger import get_logger
|
|
|
5 |
|
6 |
class NpcBertMLM():
|
7 |
r"""A class for performing masked language modeling with BERT.
|
@@ -46,8 +47,14 @@ class NpcBertMLM():
|
|
46 |
|
47 |
self.model = AutoModelForMaskedLM.from_pretrained(self.pretrained_model)
|
48 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
51 |
def __call__(self, *args):
|
52 |
"""Performs masked language modeling prediction.
|
53 |
|
|
|
2 |
from transformers import pipeline as hf_pipeline
|
3 |
from pathlib import Path
|
4 |
from .app_logger import get_logger
|
5 |
+
import spaces
|
6 |
|
7 |
class NpcBertMLM():
|
8 |
r"""A class for performing masked language modeling with BERT.
|
|
|
47 |
|
48 |
self.model = AutoModelForMaskedLM.from_pretrained(self.pretrained_model)
|
49 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
50 |
+
try:
|
51 |
+
self.pipeline = hf_pipeline("fill-mask", model=self.model, tokenizer=self.tokenizer, device='cuda')
|
52 |
+
except Exception as e:
|
53 |
+
self.pipeline = hf_pipeline("fill-mask", model=self.model, tokenizer=self.tokenizer, device='cpu')
|
54 |
+
self.logger.warning("No GPU")
|
55 |
+
self.logger.exception(e)
|
56 |
|
57 |
+
@spaces.GPU
|
58 |
def __call__(self, *args):
|
59 |
"""Performs masked language modeling prediction.
|
60 |
|
npc_bert_models/summary_module.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from transformers import AutoTokenizer, EncoderDecoderModel
|
2 |
from transformers import pipeline as hf_pipeline
|
3 |
from pathlib import Path
|
|
|
4 |
import re
|
5 |
from .app_logger import get_logger
|
6 |
|
@@ -29,7 +30,21 @@ class NpcBertGPT2():
|
|
29 |
|
30 |
self.model = EncoderDecoderModel.from_pretrained(self.pretrained_model)
|
31 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
model=self.model,
|
34 |
tokenizer=self.tokenizer,
|
35 |
device='cpu',
|
@@ -40,7 +55,10 @@ class NpcBertGPT2():
|
|
40 |
early_stopping=True,
|
41 |
no_repeat_ngram_size=5,
|
42 |
max_new_tokens=60)
|
|
|
|
|
43 |
|
|
|
44 |
def __call__(self, *args):
|
45 |
"""Performs masked language modeling prediction.
|
46 |
|
|
|
1 |
from transformers import AutoTokenizer, EncoderDecoderModel
|
2 |
from transformers import pipeline as hf_pipeline
|
3 |
from pathlib import Path
|
4 |
+
import spaces
|
5 |
import re
|
6 |
from .app_logger import get_logger
|
7 |
|
|
|
30 |
|
31 |
self.model = EncoderDecoderModel.from_pretrained(self.pretrained_model)
|
32 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
33 |
+
|
34 |
+
try:
|
35 |
+
self.pipeline = hf_pipeline("text2text-generation",
|
36 |
+
model=self.model,
|
37 |
+
tokenizer=self.tokenizer,
|
38 |
+
device='cuda',
|
39 |
+
num_beams=4,
|
40 |
+
do_sample=True,
|
41 |
+
top_k = 5,
|
42 |
+
temperature=.95,
|
43 |
+
early_stopping=True,
|
44 |
+
no_repeat_ngram_size=5,
|
45 |
+
max_new_tokens=60)
|
46 |
+
except Exception as e:
|
47 |
+
self.pipeline = hf_pipeline("text2text-generation",
|
48 |
model=self.model,
|
49 |
tokenizer=self.tokenizer,
|
50 |
device='cpu',
|
|
|
55 |
early_stopping=True,
|
56 |
no_repeat_ngram_size=5,
|
57 |
max_new_tokens=60)
|
58 |
+
self.logger.warning("No GPU!")
|
59 |
+
self.logger.exception(e)
|
60 |
|
61 |
+
@spaces.GPU
|
62 |
def __call__(self, *args):
|
63 |
"""Performs masked language modeling prediction.
|
64 |
|
requirements.txt
CHANGED
@@ -4,4 +4,6 @@ pandas >= 2.1.4
|
|
4 |
transformers >= 4.37.2
|
5 |
numpy >= 1.26
|
6 |
gradio >= 4.18, < 4.50
|
7 |
-
scipy >= 1.12
|
|
|
|
|
|
4 |
transformers >= 4.37.2
|
5 |
numpy >= 1.26
|
6 |
gradio >= 4.18, < 4.50
|
7 |
+
scipy >= 1.12
|
8 |
+
spaces
|
9 |
+
python == 3.10.13
|