File size: 1,765 Bytes
03300b3
 
 
 
 
 
 
 
 
4faa311
 
50f7379
4faa311
50f7379
 
ee17529
3181180
ee17529
54c5e53
ee17529
 
54c5e53
ee17529
 
54c5e53
50f7379
 
54c5e53
af347f8
ee17529
54c5e53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee17529
 
54c5e53
ee17529
 
54c5e53
 
 
ee17529
 
54c5e53
 
 
 
ee17529
 
54c5e53
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
title: README
emoji: πŸ“š
colorFrom: green
colorTo: indigo
sdk: static
pinned: false
---

# MLX Community

A community org for model weights compatible with [mlx-examples](https://github.com/ml-explore/mlx-examples) powered by [MLX](https://github.com/ml-explore/mlx).

These are pre-converted weights and ready to be used in the example scripts.


# Quick start for LLMs

Install `mlx-lm`:

```
pip install mlx-lm
```

You can use `mlx-lm` from the command line. For example:

```
python -m mlx_lm.generate --model mistralai/Mistral-7B-v0.1 --prompt "hello"
```

This will download a Mistral 7B model from the Hugging Face Hub and generate
text using the given prompt. 

For a full list of options run:

```
python -m mlx_lm.generate --help
```

To quantize a model from the command line run:

```
python -m mlx_lm.convert --hf-path mistralai/Mistral-7B-v0.1 -q 
```

For more options run:

```
python -m mlx_lm.convert --help
```

You can upload new models to Hugging Face by specifying `--upload-repo` to
`convert`. For example, to upload a quantized Mistral-7B model to the 
[MLX Hugging Face community](https://huggingface.co/mlx-community) you can do:

```
python -m mlx_lm.convert \
    --hf-path mistralai/Mistral-7B-v0.1 \
    -q \
    --upload-repo mlx-community/my-4bit-mistral
```

For more details on the API checkout the full [README](https://github.com/ml-explore/mlx-examples/tree/main/llms)


### Other Examples:

For more examples, visit the [MLX Examples](https://github.com/ml-explore/mlx-examples) repo. The repo includes examples of:

- Parameter efficient fine tuning with LoRA
- Speech recognition with Whisper
- Image generation with Stable Diffusion

  and many other examples of different machine learning applications and algorithms.