mmeiro's picture
Upload app.py
cdf15b8 verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Cargar el modelo y tokenizador
model_name = "bigscience/bloomz-560m" # Modelo multiling眉e
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Funci贸n para manejar el chatbot
def chatbot(input_text, history=[]):
# Historial de conversaci贸n (opcional)
conversation = " ".join([f"Usuario: {turn[0]} Chatbot: {turn[1]}" for turn in history])
new_input = f"{conversation} Usuario: {input_text} Chatbot:"
inputs = tokenizer(new_input, return_tensors="pt", truncation=True)
outputs = model.generate(inputs["input_ids"], max_length=200, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(outputs[0], skip_special_tokens=True).split("Chatbot:")[-1].strip()
# Actualizar historial
history.append((input_text, response))
return history, history
# Configuraci贸n de la interfaz Gradio
iface = gr.Interface(
fn=chatbot,
inputs=["text", "state"], # Input de texto y estado para el historial
outputs=["chatbot", "state"], # Output del chatbot y estado
title="Neuronpyme Chatbot",
description="Un chatbot en espa帽ol para ayudarte a implementar IA en tu negocio.",
theme="compact"
)
# Lanzar la aplicaci贸n
iface.launch()