File size: 5,539 Bytes
c5c5181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import numpy as np
from PIL import Image
import cv2
import torch
from torch.utils.data import DataLoader
import albumentations as A
import pytorch_lightning as pl
from transformers import AutoImageProcessor
from datasets import Dataset, DatasetDict

# Checkpoint of the model used in the projec
MODEL_CHECKPOINT = "apple/deeplabv3-mobilevit-xx-small"
# Size of the image used to train the model
IMG_SIZE = [256, 256]


class FluorescentNeuronalDataModule(pl.LightningDataModule):
    def __init__(self, batch_size, data_dir, dataset_size=1.0):
        super().__init__()
        self.data_dir = data_dir
        self.batch_size = batch_size
        self.image_processor = AutoImageProcessor.from_pretrained(
            MODEL_CHECKPOINT, do_reduce_labels=False
        )
        self.image_resizer = A.Compose(
            [
                A.Resize(
                    width=IMG_SIZE[0],
                    height=IMG_SIZE[1],
                    interpolation=cv2.INTER_NEAREST,
                )
            ]
        )
        self.image_augmentator = A.Compose(
            [
                A.HorizontalFlip(p=0.6),
                A.VerticalFlip(p=0.6),
                A.RandomBrightnessContrast(p=0.6),
                A.RandomGamma(p=0.6),
                A.HueSaturationValue(p=0.6),
            ]
        )

        # Percentage of the dataset
        self.dataset_size = dataset_size

    def _create_dataset(self):
        images_path = os.path.join(self.data_dir, "all_images", "images")
        masks_path = os.path.join(self.data_dir, "all_masks", "masks")
        list_images = os.listdir(images_path)

        # Determine the size of the dataset
        if self.dataset_size < 1.0:
            n_images = int(len(list_images) * self.dataset_size)
            list_images = list_images[:n_images]

        images = []
        masks = []
        for image_filename in list_images:
            image_path = os.path.join(images_path, image_filename)
            mask_path = os.path.join(masks_path, image_filename)

            image = np.array(Image.open(image_path).convert("RGB"), dtype=np.uint8)
            mask = np.array(Image.open(mask_path).convert("L"), dtype=np.uint8)
            mask = (mask / 255).astype(np.uint8)

            images.append(image)
            masks.append(mask)

        dataset = Dataset.from_dict({"image": images, "mask": masks})

        # Split the dataset into train, val, and test sets
        dataset = dataset.train_test_split(test_size=0.1)
        train_val = dataset["train"]
        test_ds = dataset["test"]
        del dataset

        train_val = train_val.train_test_split(test_size=0.2)
        train_ds = train_val["train"]
        valid_ds = train_val["test"]
        del train_val

        dataset = DatasetDict(
            {"train": train_ds, "validation": valid_ds, "test": test_ds}
        )
        del train_ds, valid_ds, test_ds
        return dataset

    def _transform_train_data(self, batch):
        # Preprocess the images
        images, masks = [], []
        for i, m in zip(batch["image"], batch["mask"]):
            img = np.asarray(i, dtype=np.uint8)
            mask = np.asarray(m, dtype=np.uint8)
            # First resize the images and masks
            resized_outputs = self.image_resizer(image=img, mask=mask)
            images.append(resized_outputs["image"])
            masks.append(resized_outputs["mask"])

            # Then augment the images
            augmented_outputs = self.image_augmentator(
                image=resized_outputs["image"], mask=resized_outputs["mask"]
            )
            images.append(augmented_outputs["image"])
            masks.append(augmented_outputs["mask"])

        inputs = self.image_processor(
            images=images,
            return_tensors="pt",
        )
        inputs["labels"] = torch.tensor(masks, dtype=torch.long)
        return inputs

    def _transform_data(self, batch):
        # Preprocess the images
        images, masks = [], []
        for i, m in zip(batch["image"], batch["mask"]):
            img = np.asarray(i, dtype=np.uint8)
            mask = np.asarray(m, dtype=np.uint8)
            # Resize the images and masks
            resized_outputs = self.image_resizer(image=img, mask=mask)
            images.append(resized_outputs["image"])
            masks.append(resized_outputs["mask"])

        inputs = self.image_processor(
            images=images,
            return_tensors="pt",
        )
        inputs["labels"] = inputs["labels"] = torch.tensor(masks, dtype=torch.long)
        return inputs

    def setup(self, stage=None):
        dataset = self._create_dataset()
        train_ds = dataset["train"]
        valid_ds = dataset["validation"]
        test_ds = dataset["test"]

        if stage is None or stage == "fit":
            self.train_ds = train_ds.with_transform(self._transform_train_data)
            self.valid_ds = valid_ds.with_transform(self._transform_data)
        if stage is None or stage == "test" or stage == "predict":
            self.test_ds = test_ds.with_transform(self._transform_data)

    def train_dataloader(self):
        return DataLoader(self.train_ds, batch_size=self.batch_size, shuffle=True)

    def val_dataloader(self):
        return DataLoader(self.valid_ds, batch_size=self.batch_size)

    def test_dataloader(self):
        return DataLoader(self.test_ds, batch_size=self.batch_size)

    def predict_dataloader(self):
        return DataLoader(self.test_ds, batch_size=self.batch_size)