Spaces:
Build error
Build error
File size: 10,862 Bytes
279a80e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import sys
sys.path.append('.')
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator
import numpy as np
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
from utils import iou, sort_and_deduplicate, relation_classes, MLP, show_anns, show_mask
import torch
from ram_train_eval import RamModel,RamPredictor
from mmengine.config import Config
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
input_size = 512
hidden_size = 256
num_classes = 56
# load sam model
sam = build_sam(checkpoint="./checkpoints/sam_vit_h_4b8939.pth").to(device)
predictor = SamPredictor(sam)
mask_generator = SamAutomaticMaskGenerator(sam)
# load ram model
model_path = "./checkpoints/ram_epoch12.pth"
config = dict(
model=dict(
pretrained_model_name_or_path='bert-base-uncased',
load_pretrained_weights=False,
num_transformer_layer=2,
input_feature_size=256,
output_feature_size=768,
cls_feature_size=512,
num_relation_classes=56,
pred_type='attention',
loss_type='multi_label_ce',
),
load_from=model_path,
)
config = Config(config)
class Predictor(RamPredictor):
def __init__(self,config):
self.config = config
self.device = torch.device(
'cuda' if torch.cuda.is_available() else 'cpu')
self._build_model()
def _build_model(self):
self.model = RamModel(**self.config.model).to(self.device)
if self.config.load_from is not None:
self.model.load_state_dict(torch.load(self.config.load_from, map_location=self.device))
self.model.train()
model = Predictor(config)
# visualization
def draw_selected_mask(mask, draw):
color = (255, 0, 0, 153)
nonzero_coords = np.transpose(np.nonzero(mask))
for coord in nonzero_coords:
draw.point(coord[::-1], fill=color)
def draw_object_mask(mask, draw):
color = (0, 0, 255, 153)
nonzero_coords = np.transpose(np.nonzero(mask))
for coord in nonzero_coords:
draw.point(coord[::-1], fill=color)
def vis_selected(pil_image, coords):
# get coords
coords_x, coords_y = coords.split(',')
input_point = np.array([[int(coords_x), int(coords_y)]])
input_label = np.array([1])
# load image
image = np.array(pil_image)
predictor.set_image(image)
mask1, score1, logit1, feat1 = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
pil_image = pil_image.convert('RGBA')
mask_image = Image.new('RGBA', pil_image.size, color=(0, 0, 0, 0))
mask_draw = ImageDraw.Draw(mask_image)
draw_selected_mask(mask1[0], mask_draw)
pil_image.alpha_composite(mask_image)
yield [pil_image]
def create_title_image(word1, word2, word3, width, font_path='./assets/OpenSans-Bold.ttf'):
# Define the colors to use for each word
color_red = (255, 0, 0)
color_black = (0, 0, 0)
color_blue = (0, 0, 255)
# Define the initial font size and spacing between words
font_size = 40
# Create a new image with the specified width and white background
image = Image.new('RGB', (width, 60), (255, 255, 255))
# Load the specified font
font = ImageFont.truetype(font_path, font_size)
# Keep increasing the font size until all words fit within the desired width
while True:
# Create a draw object for the image
draw = ImageDraw.Draw(image)
word_spacing = font_size / 2
# Draw each word in the appropriate color
x_offset = word_spacing
draw.text((x_offset, 0), word1, color_red, font=font)
x_offset += font.getsize(word1)[0] + word_spacing
draw.text((x_offset, 0), word2, color_black, font=font)
x_offset += font.getsize(word2)[0] + word_spacing
draw.text((x_offset, 0), word3, color_blue, font=font)
word_sizes = [font.getsize(word) for word in [word1, word2, word3]]
total_width = sum([size[0] for size in word_sizes]) + word_spacing * 3
# Stop increasing font size if the image is within the desired width
if total_width <= width:
break
# Increase font size and reset the draw object
font_size -= 1
image = Image.new('RGB', (width, 50), (255, 255, 255))
font = ImageFont.truetype(font_path, font_size)
draw = None
return image
def concatenate_images_vertical(image1, image2):
# Get the dimensions of the two images
width1, height1 = image1.size
width2, height2 = image2.size
# Create a new image with the combined height and the maximum width
new_image = Image.new('RGBA', (max(width1, width2), height1 + height2))
# Paste the first image at the top of the new image
new_image.paste(image1, (0, 0))
# Paste the second image below the first image
new_image.paste(image2, (0, height1))
return new_image
def relate_selected(input_image, k, coords):
# load image
pil_image = input_image.convert('RGBA')
w, h = pil_image.size
if w > 800:
pil_image.thumbnail((800, 800*h/w))
input_image.thumbnail((800, 800*h/w))
coords = str(int(int(coords.split(',')[0]) * 800 / w)) + ',' + str(int(int(coords.split(',')[1]) * 800 / w))
image = np.array(input_image)
sam_masks = mask_generator.generate(image)
# get old mask
coords_x, coords_y = coords.split(',')
input_point = np.array([[int(coords_x), int(coords_y)]])
input_label = np.array([1])
mask1, score1, logit1, feat1 = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
filtered_masks = sort_and_deduplicate(sam_masks)
filtered_masks = [d for d in sam_masks if iou(d['segmentation'], mask1[0]) < 0.95][:k]
pil_image_list = []
# run model
feat = feat1
for fm in filtered_masks:
feat2 = torch.Tensor(fm['feat']).unsqueeze(0).unsqueeze(0).to(device)
feat = torch.cat((feat, feat2), dim=1)
matrix_output, rel_triplets = model.predict(feat)
subject_output = matrix_output.permute([0,2,3,1])[:,0,1:]
for i in range(len(filtered_masks)):
output = subject_output[:,i]
topk_indices = torch.argsort(-output).flatten()
relation = relation_classes[topk_indices[:1][0]]
mask_image = Image.new('RGBA', pil_image.size, color=(0, 0, 0, 0))
mask_draw = ImageDraw.Draw(mask_image)
draw_selected_mask(mask1[0], mask_draw)
draw_object_mask(filtered_masks[i]['segmentation'], mask_draw)
current_pil_image = pil_image.copy()
current_pil_image.alpha_composite(mask_image)
title_image = create_title_image('Red', relation, 'Blue', current_pil_image.size[0])
concate_pil_image = concatenate_images_vertical(current_pil_image, title_image)
pil_image_list.append(concate_pil_image)
yield pil_image_list
def relate_anything(input_image, k):
# load image
pil_image = input_image.convert('RGBA')
w, h = pil_image.size
if w > 800:
pil_image.thumbnail((800, 800*h/w))
input_image.thumbnail((800, 800*h/w))
image = np.array(input_image)
sam_masks = mask_generator.generate(image)
filtered_masks = sort_and_deduplicate(sam_masks)
feat_list = []
for fm in filtered_masks:
feat = torch.Tensor(fm['feat']).unsqueeze(0).unsqueeze(0).to(device)
feat_list.append(feat)
feat = torch.cat(feat_list, dim=1).to(device)
matrix_output, rel_triplets = model.predict(feat)
pil_image_list = []
for i, rel in enumerate(rel_triplets[:k]):
s,o,r = int(rel[0]),int(rel[1]),int(rel[2])
relation = relation_classes[r]
mask_image = Image.new('RGBA', pil_image.size, color=(0, 0, 0, 0))
mask_draw = ImageDraw.Draw(mask_image)
draw_selected_mask(filtered_masks[s]['segmentation'], mask_draw)
draw_object_mask(filtered_masks[o]['segmentation'], mask_draw)
current_pil_image = pil_image.copy()
current_pil_image.alpha_composite(mask_image)
title_image = create_title_image('Red', relation, 'Blue', current_pil_image.size[0])
concate_pil_image = concatenate_images_vertical(current_pil_image, title_image)
pil_image_list.append(concate_pil_image)
yield pil_image_list
DESCRIPTION = '''# Relate-Anyting
### π π π This is a demo that combine Meta's Segment-Anything model with the ECCV'22 paper: [Panoptic Scene Graph Generation](https://psgdataset.org/).
### π₯π₯π₯ Please star our codebase [openpsg](https://github.com/Jingkang50/OpenPSG) and [RAM](https://github.com/Luodian/RelateAnything) if you find it useful / interesting.
'''
block = gr.Blocks()
block = block.queue()
with block:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
input_image = gr.Image(source="upload", type="pil", value="assets/dog.jpg")
with gr.Tab("Relate Anything"):
num_relation = gr.Slider(label="How many relations do you want to see", minimum=1, maximum=20, value=5, step=1)
relate_all_button = gr.Button(label="Relate Anything!")
with gr.Tab("Relate me with Anything"):
img_input_coords = gr.Textbox(label="Click anything to get input coords")
def select_handler(evt: gr.SelectData):
coords = evt.index
return f"{coords[0]},{coords[1]}"
input_image.select(select_handler, None, img_input_coords)
run_button_vis = gr.Button(label="Visualize the Select Thing")
selected_gallery = gr.Gallery(label="Selected Thing", show_label=True, elem_id="gallery").style(preview=True, grid=2, object_fit="scale-down")
k = gr.Slider(label="Number of things you want to relate", minimum=1, maximum=20, value=5, step=1)
relate_selected_button = gr.Button(value="Relate it with Anything", interactive=True)
with gr.Column():
image_gallery = gr.Gallery(label="Your Result", show_label=True, elem_id="gallery").style(preview=True, columns=5, object_fit="scale-down")
# relate anything
relate_all_button.click(fn=relate_anything, inputs=[input_image, num_relation], outputs=[image_gallery], show_progress=True, queue=True)
# relate selected
run_button_vis.click(fn=vis_selected, inputs=[input_image, img_input_coords], outputs=[selected_gallery], show_progress=True, queue=True)
relate_selected_button.click(fn=relate_selected, inputs=[input_image, k, img_input_coords], outputs=[image_gallery], show_progress=True, queue=True)
block.launch(debug=True, share=True)
|