Spaces:
Running
on
A10G
Running
on
A10G
File size: 3,480 Bytes
69b07b9 65d863f 69b07b9 65d863f 69b07b9 65d863f 69b07b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import librosa
from transformers import Wav2Vec2ForCTC, AutoProcessor
import torch
import numpy as np
from pathlib import Path
from huggingface_hub import hf_hub_download
from torchaudio.models.decoder import ctc_decoder
ASR_SAMPLING_RATE = 16_000
ASR_LANGUAGES = {}
with open(f"data/asr/all_langs.tsv") as f:
for line in f:
iso, name = line.split(" ", 1)
ASR_LANGUAGES[iso.strip()] = name.strip()
MODEL_ID = "facebook/mms-1b-all"
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
lm_decoding_config = {}
lm_decoding_configfile = hf_hub_download(
repo_id="facebook/mms-cclms",
filename="decoding_config.json",
subfolder="mms-1b-all",
)
with open(lm_decoding_configfile) as f:
lm_decoding_config = json.loads(f.read())
# allow language model decoding for "eng"
decoding_config = lm_decoding_config["eng"]
lm_file = hf_hub_download(
repo_id="facebook/mms-cclms",
filename=decoding_config["lmfile"].rsplit("/", 1)[1],
subfolder=decoding_config["lmfile"].rsplit("/", 1)[0],
)
token_file = hf_hub_download(
repo_id="facebook/mms-cclms",
filename=decoding_config["tokensfile"].rsplit("/", 1)[1],
subfolder=decoding_config["tokensfile"].rsplit("/", 1)[0],
)
lexicon_file = None
if decoding_config["lexiconfile"] is not None:
lexicon_file = hf_hub_download(
repo_id="facebook/mms-cclms",
filename=decoding_config["lexiconfile"].rsplit("/", 1)[1],
subfolder=decoding_config["lexiconfile"].rsplit("/", 1)[0],
)
beam_search_decoder = ctc_decoder(
lexicon=lexicon_file,
tokens=token_file,
lm=lm_file,
nbest=1,
beam_size=500,
beam_size_token=50,
lm_weight=float(decoding_config["lmweight"]),
word_score=float(decoding_config["wordscore"]),
sil_score=float(decoding_config["silweight"]),
blank_token="<s>",
)
def transcribe(audio_data=None, lang="eng (English)"):
assert lang.startswith("eng")
if not audio_data:
return "<<ERROR: Empty Audio Input>>"
if isinstance(audio_data, tuple):
# microphone
sr, audio_samples = audio_data
audio_samples = (audio_samples / 32768.0).astype(np.float32)
if sr != ASR_SAMPLING_RATE:
audio_samples = librosa.resample(
audio_samples, orig_sr=sr, target_sr=ASR_SAMPLING_RATE
)
else:
# file upload
if not isinstance(audio_data, str):
return "<<ERROR: Invalid Audio Input Instance: {}>>".format(type(audio_data))
audio_samples = librosa.load(audio_data, sr=ASR_SAMPLING_RATE, mono=True)[0]
lang_code = lang.split()[0]
processor.tokenizer.set_target_lang(lang_code)
model.load_adapter(lang_code)
inputs = processor(
audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt"
)
# set device
if torch.cuda.is_available():
device = torch.device("cuda")
elif (
hasattr(torch.backends, "mps")
and torch.backends.mps.is_available()
and torch.backends.mps.is_built()
):
device = torch.device("mps")
else:
device = torch.device("cpu")
model.to(device)
inputs = inputs.to(device)
with torch.no_grad():
outputs = model(**inputs).logits
beam_search_result = beam_search_decoder(outputs.to("cpu"))
transcription = " ".join(beam_search_result[0][0].words).strip()
return transcription
|