MMS / asr.py
multimodalart's picture
First commit
7bcf8d7
raw
history blame
4.03 kB
import librosa
from transformers import Wav2Vec2ForCTC, AutoProcessor
import torch
import json
from huggingface_hub import hf_hub_download
from torchaudio.models.decoder import ctc_decoder
ASR_SAMPLING_RATE = 16_000
ASR_LANGUAGES = {}
with open(f"data/asr/all_langs.tsv") as f:
for line in f:
iso, name = line.split(" ", 1)
ASR_LANGUAGES[iso] = name
MODEL_ID = "facebook/mms-1b-all"
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
lm_decoding_config = {}
# lm_decoding_configfile = hf_hub_download(
# repo_id="facebook/mms-cclms",
# filename="decoding_config.json",
# subfolder="mms-1b-all",
# )
# with open(lm_decoding_configfile) as f:
# lm_decoding_config = json.loads(f.read())
# allow language model decoding for specific languages
lm_decode_isos = ["eng"]
def transcribe(
audio_source=None, microphone=None, file_upload=None, lang="eng (English)"
):
if type(microphone) is dict:
# HACK: microphone variable is a dict when running on examples
microphone = microphone["name"]
audio_fp = (
file_upload if "upload" in str(audio_source or "").lower() else microphone
)
audio_samples = librosa.load(audio_fp, sr=ASR_SAMPLING_RATE, mono=True)[0]
lang_code = lang.split()[0]
processor.tokenizer.set_target_lang(lang_code)
model.load_adapter(lang_code)
inputs = processor(
audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt"
)
# set device
if torch.cuda.is_available():
device = torch.device("cuda")
elif (
hasattr(torch.backends, "mps")
and torch.backends.mps.is_available()
and torch.backends.mps.is_built()
):
device = torch.device("mps")
else:
device = torch.device("cpu")
model.to(device)
inputs = inputs.to(device)
with torch.no_grad():
outputs = model(**inputs).logits
if lang_code not in lm_decoding_config or lang_code not in lm_decode_isos:
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
else:
decoding_config = lm_decoding_config[lang_code]
lm_file = hf_hub_download(
repo_id="facebook/mms-cclms",
filename=decoding_config["lmfile"].rsplit("/", 1)[1],
subfolder=decoding_config["lmfile"].rsplit("/", 1)[0],
)
token_file = hf_hub_download(
repo_id="facebook/mms-cclms",
filename=decoding_config["tokensfile"].rsplit("/", 1)[1],
subfolder=decoding_config["tokensfile"].rsplit("/", 1)[0],
)
lexicon_file = None
if decoding_config["lexiconfile"] is not None:
lexicon_file = hf_hub_download(
repo_id="facebook/mms-cclms",
filename=decoding_config["lexiconfile"].rsplit("/", 1)[1],
subfolder=decoding_config["lexiconfile"].rsplit("/", 1)[0],
)
beam_search_decoder = ctc_decoder(
lexicon=lexicon_file,
tokens=token_file,
lm=lm_file,
nbest=1,
beam_size=500,
beam_size_token=50,
lm_weight=float(decoding_config["lmweight"]),
word_score=float(decoding_config["wordscore"]),
sil_score=float(decoding_config["silweight"]),
blank_token="<s>",
)
beam_search_result = beam_search_decoder(outputs.to("cpu"))
transcription = " ".join(beam_search_result[0][0].words).strip()
return transcription
ASR_EXAMPLES = [
[None, "assets/english.mp3", None, "eng (English)"],
# [None, "assets/tamil.mp3", None, "tam (Tamil)"],
# [None, "assets/burmese.mp3", None, "mya (Burmese)"],
]
ASR_NOTE = """
The above demo uses beam-search decoding with LM for English and greedy decoding results for all other languages.
Checkout the instructions [here](https://huggingface.co/facebook/mms-1b-all) on how to run LM decoding for other languages.
"""