Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- Banking Marketing.csv +0 -0
- Deposito.jpg +0 -0
- app.py +10 -0
- eda.py +55 -0
- model_rf.pkl +3 -0
- prediction.py +94 -0
- requirements.txt +8 -0
Banking Marketing.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Deposito.jpg
ADDED
app.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import eda
|
3 |
+
import prediction
|
4 |
+
|
5 |
+
page = st.sidebar.selectbox('Pilih Halaman : ', ('Dashboard', 'Prediction'))
|
6 |
+
|
7 |
+
if page == 'Dashboard' :
|
8 |
+
eda.run()
|
9 |
+
else:
|
10 |
+
prediction.run()
|
eda.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import seaborn as sns
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import plotly.express as px
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
def run():
|
9 |
+
#Membuat title
|
10 |
+
st.title('Deposito Simulation')
|
11 |
+
|
12 |
+
#Tambahkan gambar
|
13 |
+
image = Image.open('Deposito.jpg')
|
14 |
+
st.image(image, caption = 'Deposito')
|
15 |
+
|
16 |
+
#Menambahkan deskripsi
|
17 |
+
st.write('Page ini dibuat oleh Mardhya Malik Nurbani')
|
18 |
+
|
19 |
+
#Membuat garis
|
20 |
+
st.markdown('----')
|
21 |
+
|
22 |
+
#Masukkan pandas dataframe
|
23 |
+
|
24 |
+
#Show dataframe
|
25 |
+
df = pd.read_csv('Banking Marketing.csv')
|
26 |
+
st.dataframe(df)
|
27 |
+
|
28 |
+
#Membuat bar plot
|
29 |
+
# st.write('#### Plot AttackingWorkRate')
|
30 |
+
# fig = plt.figure(figsize=(15,5))
|
31 |
+
# sns.countplot(x='AttackingWorkRate', data = df)
|
32 |
+
# st.pyplot(fig)
|
33 |
+
|
34 |
+
# #Membuat histogram
|
35 |
+
# st.write('#### Histogram of Age')
|
36 |
+
# fig = plt.figure(figsize=(15,5))
|
37 |
+
# sns.histplot(df['Overall'], bins = 30, kde = True)
|
38 |
+
# st.pyplot(fig)
|
39 |
+
|
40 |
+
# #membuat histogram berdasarkan inputan user
|
41 |
+
# st.write('#### Histogram berdasarkan input user')
|
42 |
+
# #kalo mau pake radio button, ganti selectbox jadi radio
|
43 |
+
# option = st.selectbox('Pilih Column : ', ('Age', 'Weight', 'Height', 'ShootingTotal'))
|
44 |
+
# fig = plt.figure(figsize= (15,5))
|
45 |
+
# sns.histplot(df[option], bins = 30, kde = True)
|
46 |
+
# st.pyplot(fig)
|
47 |
+
|
48 |
+
# #Membuat Plotly plot
|
49 |
+
|
50 |
+
# st.write('#### Plotly Plot - ValueEUR vs Overall')
|
51 |
+
# fig = px.scatter(df, x = 'ValueEUR', y = 'Overall', hover_data = ['Name', 'Age'])
|
52 |
+
# st.plotly_chart(fig)
|
53 |
+
|
54 |
+
if __name__ == '__main__':
|
55 |
+
run()
|
model_rf.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a744cb5943a7967f73796630256a9b43409871a3869784c11716314f6914ecc
|
3 |
+
size 3708728
|
prediction.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import joblib, pickle
|
5 |
+
import json
|
6 |
+
|
7 |
+
#Load All Files
|
8 |
+
|
9 |
+
#load model dan files yang sudah di save pada framing
|
10 |
+
# with open('model_rf.pkl', 'rb') as file_1:
|
11 |
+
# model_rf = pickle.load(file_1)
|
12 |
+
# # model_patch = 'model_rf.pkl'
|
13 |
+
# model_rf = joblib.load(model_patch)
|
14 |
+
# with open('list_num_cols.txt', 'r') as file_1:
|
15 |
+
# list_num_cols = json.load(file_1)
|
16 |
+
# with open('list_cat_cols.txt', 'r') as file_2:
|
17 |
+
# list_cat_cols = json.load(file_2)
|
18 |
+
with open('model_rf.pkl', 'rb') as file3:
|
19 |
+
loaded_model = pickle.load(file3)
|
20 |
+
|
21 |
+
def run():
|
22 |
+
|
23 |
+
with st.form('deposito_simulation'):
|
24 |
+
#Field Umur
|
25 |
+
Age = st.number_input('Age', min_value = 17, max_value = 75, value = 25, step = 1, help = 'Customers Age')
|
26 |
+
#Field Nama
|
27 |
+
Job = st.selectbox('Job', ('admin.', 'technician', 'services','management','retired','blue-collar','unemployed','entrepreneur','housemaid','unknown','self-employed','student'), index = 1)
|
28 |
+
#Marital Status
|
29 |
+
Marital = st.selectbox('Marital Status', ('married', 'single', 'divorced'), index = 1)
|
30 |
+
#Education Status
|
31 |
+
Education = st.selectbox('Education', ('secondary', 'tertiary', 'primary', 'unknown'), index = 1)
|
32 |
+
#Default Status
|
33 |
+
Default = st.selectbox('Default', ('no', 'yes'), index = 1, help = 'has credit in default?')
|
34 |
+
#Field Pace Total
|
35 |
+
Balance = st.number_input('Balance', min_value = 0, max_value=999999, value = 50)
|
36 |
+
#Housing Status
|
37 |
+
Housing = st.selectbox('Housing', ('yes', 'no'), index = 1, help = 'has housing loan?')
|
38 |
+
#Loan Status
|
39 |
+
Loan = st.selectbox('Loan', ('no', 'yes'), index = 1, help = 'has personal loan?')
|
40 |
+
#Contact Status
|
41 |
+
Contact = st.selectbox('Contact', ('unknown', 'cellular', 'telephone'), index = 1)
|
42 |
+
#Day
|
43 |
+
Day = st.number_input('Day', min_value = 1, max_value=31, value = 1, help = 'last contact day of the month')
|
44 |
+
#Month
|
45 |
+
Month = st.selectbox('Month', ('may', 'jun', 'jul', 'aug', 'oct', 'nov', 'dec', 'jan', 'feb', 'mar', 'apr', 'sep'), index = 1, help = 'last contact month of year')
|
46 |
+
#Duration
|
47 |
+
Duration = st.number_input('Duration', min_value = 0, max_value=999999, value = 50, help = 'last contact duration, in seconds')
|
48 |
+
#Day
|
49 |
+
Campaign = st.number_input('Campaign', min_value = 1, max_value=100, value = 1, help = 'number of contacts performed during this campaign and for this client')
|
50 |
+
#pDyas
|
51 |
+
Pdays = st.number_input('Pdays', min_value = -1 , max_value=9999999, value = 0, help = 'number of days that passed by after the client was last contacted from a previous campaign (numeric, -1 means client was not previously contacted')
|
52 |
+
#Previous
|
53 |
+
Previous = st.number_input('Previous', min_value = 0, max_value=100, value = 0, help = 'previous: number of contacts performed before this campaign and for this client')
|
54 |
+
#Poutcome Status
|
55 |
+
Poutcome = st.selectbox('P Outcome', ('unknown', 'other', 'failure', 'success'), index = 1, help = 'outcome of the previous marketing campaign')
|
56 |
+
|
57 |
+
|
58 |
+
#bikin submit button
|
59 |
+
submitted = st.form_submit_button('Predict')
|
60 |
+
|
61 |
+
#Inference
|
62 |
+
data_inf = {
|
63 |
+
'age' : Age,
|
64 |
+
'job' : Job,
|
65 |
+
'marital' : Marital,
|
66 |
+
'education' : Education,
|
67 |
+
'default' : Default,
|
68 |
+
'balance' : Balance,
|
69 |
+
'housing' :Housing,
|
70 |
+
'loan': Loan,
|
71 |
+
'contact' : Contact,
|
72 |
+
'day' :Day,
|
73 |
+
'month' :Month,
|
74 |
+
'duration':Duration,
|
75 |
+
'campaign': Campaign,
|
76 |
+
'pdays':Pdays,
|
77 |
+
'previous':Previous,
|
78 |
+
'poutcome': Poutcome,
|
79 |
+
}
|
80 |
+
|
81 |
+
data_inf = pd.DataFrame([data_inf])
|
82 |
+
st.dataframe(data_inf)
|
83 |
+
|
84 |
+
#Logic ketika predic button ditekan
|
85 |
+
|
86 |
+
if submitted:
|
87 |
+
|
88 |
+
#predict using pipe rf model
|
89 |
+
predictions = loaded_model.predict(data_inf)
|
90 |
+
|
91 |
+
st.write('## Deposit : ', str(int(predictions)))
|
92 |
+
|
93 |
+
if __name__ == '__main__':
|
94 |
+
run()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
seaborn
|
4 |
+
matplotlib
|
5 |
+
numpy
|
6 |
+
plotly
|
7 |
+
pillow
|
8 |
+
scikit-learn==1,2.2
|