mobinln commited on
Commit
5875608
·
1 Parent(s): 4f243a5

add csv ingestion and prompt templates

Browse files
Files changed (5) hide show
  1. .gitignore +3 -0
  2. app.py +33 -33
  3. employees +0 -0
  4. llm.py +93 -0
  5. sql.py +102 -0
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ __pycache__
2
+ ./__pycache__
3
+ */__pycache
app.py CHANGED
@@ -1,35 +1,33 @@
1
  import streamlit as st
2
- from llama_cpp import Llama
3
-
4
-
5
- repo_ir = "Qwen/Qwen2.5-Coder-1.5B-Instruct-GGUF"
6
- llm = Llama.from_pretrained(
7
- repo_id=repo_ir,
8
- filename="qwen2.5-coder-1.5b-instruct-q8_0.gguf",
9
- verbose=True,
10
- use_mmap=True,
11
- use_mlock=True,
12
- n_threads=4,
13
- n_threads_batch=4,
14
- n_ctx=8000,
15
- )
16
- print(f"{repo_ir} loaded successfully. ✅")
17
-
18
-
19
- # Streamed response emulator
20
- def response_generator(messages):
21
- completion = llm.create_chat_completion(
22
- messages, max_tokens=2048, stream=True, temperature=0.7, top_p=0.95
23
- )
24
 
25
- for message in completion:
26
- delta = message["choices"][0]["delta"]
27
- if "content" in delta:
28
- yield delta["content"]
29
 
 
30
 
31
  st.title("CSV TO SQL")
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  # Initialize chat history
34
  if "messages" not in st.session_state:
35
  st.session_state.messages = []
@@ -47,14 +45,16 @@ if prompt := st.chat_input("What is up?"):
47
  with st.chat_message("user"):
48
  st.markdown(prompt)
49
 
50
- messages = [{"role": "system", "content": "You are a helpful assistant"}]
51
-
52
- for val in st.session_state.messages:
53
- messages.append(val)
54
-
55
- messages.append({"role": "user", "content": prompt})
56
  # Display assistant response in chat message container
57
  with st.chat_message("assistant"):
58
- response = st.write_stream(response_generator(messages=messages))
 
 
 
 
 
 
 
 
59
  # Add assistant response to chat history
60
  st.session_state.messages.append({"role": "assistant", "content": response})
 
1
  import streamlit as st
2
+ from llm import load_llm, response_generator
3
+ from sql import csv_to_sqlite
4
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ # repo_id = "Qwen/Qwen2.5-Coder-1.5B-Instruct-GGUF"
7
+ repo_id = "Qwen/Qwen2.5-0.5B-Instruct-GGUF"
8
+ # filename="qwen2.5-coder-1.5b-instruct-q8_0.gguf"
9
+ filename = "qwen2.5-0.5b-instruct-q8_0.gguf"
10
 
11
+ llm = load_llm(repo_id, filename)
12
 
13
  st.title("CSV TO SQL")
14
 
15
+ with st.expander("Upload CSV"):
16
+ csv_file = st.file_uploader(
17
+ "CSV",
18
+ )
19
+ db_name = st.text_input("DB Name")
20
+ table_name = st.text_input("Table Name")
21
+ if st.button("Save"):
22
+ if csv_file and db_name and table_name:
23
+ st.session_state.db_name = db_name
24
+ st.session_state.table_name = table_name
25
+
26
+ csv_to_sqlite(csv_file, db_name, table_name)
27
+ st.write("Saved ✅")
28
+ else:
29
+ st.write("Please enter all values")
30
+
31
  # Initialize chat history
32
  if "messages" not in st.session_state:
33
  st.session_state.messages = []
 
45
  with st.chat_message("user"):
46
  st.markdown(prompt)
47
 
 
 
 
 
 
 
48
  # Display assistant response in chat message container
49
  with st.chat_message("assistant"):
50
+ response = st.write(
51
+ response_generator(
52
+ db_name=st.session_state.db_name,
53
+ table_name=st.session_state.table_name,
54
+ llm=llm,
55
+ messages=st.session_state.messages,
56
+ question=prompt,
57
+ )
58
+ )
59
  # Add assistant response to chat history
60
  st.session_state.messages.append({"role": "assistant", "content": response})
employees ADDED
Binary file (8.19 kB). View file
 
llm.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from llama_cpp import Llama
3
+ from sql import get_table_schema
4
+
5
+
6
+ @st.cache_resource()
7
+ def load_llm(repo_id, filename):
8
+ llm = Llama.from_pretrained(
9
+ repo_id=repo_id,
10
+ filename=filename,
11
+ verbose=True,
12
+ use_mmap=True,
13
+ use_mlock=True,
14
+ n_threads=4,
15
+ n_threads_batch=4,
16
+ n_ctx=8000,
17
+ )
18
+ print(f"{repo_id} loaded successfully. ✅")
19
+ return llm
20
+
21
+
22
+ def generate_llm_prompt(table_name, table_schema):
23
+ """
24
+ Generates a prompt to provide context about a table's schema for LLM to convert natural language to SQL.
25
+
26
+ Args:
27
+ table_name (str): The name of the table.
28
+ table_schema (list): A list of tuples where each tuple contains information about the columns in the table.
29
+
30
+ Returns:
31
+ str: The generated prompt to be used by the LLM.
32
+ """
33
+ prompt = f"""You are an expert in writing SQL queries for relational databases.
34
+ You will be provided with a database schema and a natural
35
+ language question, and your task is to generate an accurate SQL query.
36
+
37
+ The database has a table named '{table_name}' with the following schema:\n\n"""
38
+
39
+ prompt += "Columns:\n"
40
+
41
+ for col in table_schema:
42
+ column_name = col[1]
43
+ column_type = col[2]
44
+ prompt += f"- {column_name} ({column_type})\n"
45
+
46
+ prompt += "\nPlease generate a SQL query based on the following natural language question. ONLY return the SQL query."
47
+
48
+ return prompt
49
+
50
+
51
+ def generate_sql_query(question, table_name, db_name):
52
+ pass
53
+ # table_name = 'movies'
54
+ # db_name = 'movies_db.db'
55
+ # table_schema = get_table_schema(db_name, table_name)
56
+ # llm_prompt = generate_llm_prompt(table_name, table_schema)
57
+ # user_prompt = """Question: {question}"""
58
+ # response = completion(
59
+ # api_key=OPENAI_API_KEY,
60
+ # model="gpt-4o-mini",
61
+ # messages=[
62
+ # ,
63
+ # {"content": user_prompt.format(question=question),"role": "user"}],
64
+ # max_tokens=1000
65
+ # )
66
+ # answer = response.choices[0].message.content
67
+
68
+ # query = answer.replace("```sql", "").replace("```", "")
69
+ # query = query.strip()
70
+ # return query
71
+
72
+
73
+ # Streamed response emulator
74
+ def response_generator(llm, messages, question, table_name, db_name):
75
+ table_schema = get_table_schema(db_name, table_name)
76
+ llm_prompt = generate_llm_prompt(table_name, table_schema)
77
+ user_prompt = """Question: {question}"""
78
+
79
+ messages = [{"content": llm_prompt.format(table_name=table_name), "role": "system"}]
80
+
81
+ for val in st.session_state.messages:
82
+ messages.append(val)
83
+
84
+ messages.append({"role": "user", "content": user_prompt})
85
+
86
+ response = llm.create_chat_completion(
87
+ messages, max_tokens=2048, temperature=0.7, top_p=0.95
88
+ )
89
+ answer = response["choices"][0].message.content
90
+
91
+ query = answer.replace("```sql", "").replace("```", "")
92
+ query = query.strip()
93
+ return query
sql.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import sqlite3
3
+
4
+
5
+ def csv_to_sqlite(csv_file, db_name, table_name):
6
+ # Read the CSV file into a pandas DataFrame
7
+ df = pd.read_csv(csv_file)
8
+
9
+ # Connect to the SQLite database (it will create the database file if it doesn't exist)
10
+ conn = sqlite3.connect(db_name)
11
+ cursor = conn.cursor()
12
+
13
+ # Infer the schema based on the DataFrame columns and data types
14
+ def create_table_from_df(df, table_name):
15
+ # Get column names and types
16
+ col_types = []
17
+ for col in df.columns:
18
+ dtype = df[col].dtype
19
+ if dtype == "int64":
20
+ col_type = "INTEGER"
21
+ elif dtype == "float64":
22
+ col_type = "REAL"
23
+ else:
24
+ col_type = "TEXT"
25
+ col_types.append(f'"{col}" {col_type}')
26
+
27
+ # Create the table schema
28
+ col_definitions = ", ".join(col_types)
29
+ create_table_query = (
30
+ f"CREATE TABLE IF NOT EXISTS {table_name} ({col_definitions});"
31
+ )
32
+ # print(create_table_query)
33
+
34
+ # Execute the table creation query
35
+ cursor.execute(create_table_query)
36
+ print(f"Table '{table_name}' created with schema: {col_definitions}")
37
+
38
+ # Create table schema
39
+ create_table_from_df(df, table_name)
40
+
41
+ # Insert CSV data into the SQLite table
42
+ df.to_sql(table_name, conn, if_exists="replace", index=False)
43
+
44
+ # Commit and close the connection
45
+ conn.commit()
46
+ conn.close()
47
+ print(f"Data loaded into '{table_name}' table in '{db_name}' SQLite database.")
48
+
49
+
50
+ def run_sql_query(db_name, query):
51
+ """
52
+ Executes a SQL query on a SQLite database and returns the results.
53
+
54
+ Args:
55
+ db_name (str): The name of the SQLite database file.
56
+ query (str): The SQL query to run.
57
+
58
+ Returns:
59
+ list: Query result as a list of tuples, or an empty list if no results or error occurred.
60
+ """
61
+ try:
62
+ # Connect to the SQLite database
63
+ conn = sqlite3.connect(db_name)
64
+ cursor = conn.cursor()
65
+
66
+ # Execute the SQL query
67
+ cursor.execute(query)
68
+
69
+ # Fetch all results
70
+ results = cursor.fetchall()
71
+
72
+ # Close the connection
73
+ conn.close()
74
+
75
+ # Return results or an empty list if no results were found
76
+ return results if results else []
77
+
78
+ except sqlite3.Error as e:
79
+ print(f"An error occurred while executing the query: {e}")
80
+ return []
81
+
82
+
83
+ def get_table_schema(db_name, table_name):
84
+ """
85
+ Retrieves the schema (columns and data types) for a given table in the SQLite database.
86
+
87
+ Args:
88
+ db_name (str): The name of the SQLite database file.
89
+ table_name (str): The name of the table.
90
+
91
+ Returns:
92
+ list: A list of tuples with column name, data type, and other info.
93
+ """
94
+ conn = sqlite3.connect(db_name)
95
+ cursor = conn.cursor()
96
+
97
+ # Use PRAGMA to get the table schema
98
+ cursor.execute(f"PRAGMA table_info({table_name});")
99
+ schema = cursor.fetchall()
100
+
101
+ conn.close()
102
+ return schema