import streamlit as st from llm import load_llm, response_generator from sql import csv_to_sqlite, run_sql_query repo_id = "Qwen/Qwen2.5-Coder-1.5B-Instruct-GGUF" filename = "qwen2.5-coder-1.5b-instruct-q8_0.gguf" # repo_id = "Qwen/Qwen2.5-0.5B-Instruct-GGUF" # filename = "qwen2.5-0.5b-instruct-q8_0.gguf" llm = load_llm(repo_id, filename) st.title("CSV TO SQL") st.write("To start, Upload your CSV below 👇") if st.button("Example prompt"): st.session_state.db_name = "sales" st.session_state.table_name = "sales" csv_to_sqlite("./data/sales.csv", "sales", "sales") prompt = "What is the sum, count and average sales?" st.session_state.messages.append({"role": "user", "content": prompt}) response_sql = response_generator( db_name=st.session_state.db_name, table_name=st.session_state.table_name, llm=llm, messages=st.session_state.messages, question=prompt, ) result = run_sql_query(db_name=st.session_state.db_name, query=response_sql) st.session_state.messages.append({"role": "assistant", "content": response_sql}) st.session_state.messages.append( {"role": "assistant", "content": str(result), "result": result} ) with st.expander("Upload CSV"): csv_file = st.file_uploader( "CSV", ) db_name = st.text_input("DB Name") table_name = st.text_input("Table Name") if st.button("Save"): if csv_file and db_name and table_name: st.session_state.db_name = db_name st.session_state.table_name = table_name csv_to_sqlite(csv_file, db_name, table_name) st.write("Saved ✅") else: st.write("Please enter all values") # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): if "content" in message: st.markdown(message["content"]) if "result" in message: st.dataframe(message["result"]) # Accept user input if prompt := st.chat_input( "What is up?", disabled=( not "db_name" in st.session_state or not "table_name" in st.session_state ), ): # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) # Display user message in chat message container with st.chat_message("user"): st.markdown(prompt) # Display assistant response in chat message container with st.chat_message("assistant"): response_sql = response_generator( db_name=st.session_state.db_name, table_name=st.session_state.table_name, llm=llm, messages=st.session_state.messages, question=prompt, ) response = st.markdown(response_sql) result = run_sql_query(db_name=st.session_state.db_name, query=response_sql) st.markdown(result) st.table(result) # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": response_sql})