import streamlit as st from llama_cpp import Llama from sql import get_table_schema @st.cache_resource() def load_llm(repo_id, filename): llm = Llama.from_pretrained( repo_id=repo_id, filename=filename, verbose=True, use_mmap=True, use_mlock=True, n_threads=4, n_threads_batch=4, n_ctx=8000, ) print(f"{repo_id} loaded successfully. ✅") return llm def generate_system_prompt(table_name, table_schema): """ Generates a prompt to provide context about a table's schema for LLM to convert natural language to SQL. Args: table_name (str): The name of the table. table_schema (list): A list of tuples where each tuple contains information about the columns in the table. Returns: str: The generated prompt to be used by the LLM. """ prompt = f"""You are an expert in writing SQL queries for relational databases. You will be provided with a database schema and a natural language question, and your task is to generate an accurate SQL query. The database has a table named '{table_name}' with the following schema:\n\n""" prompt += "Columns:\n" for col in table_schema: column_name = col[1] column_type = col[2] prompt += f"- {column_name} ({column_type})\n" prompt += "\nPlease generate a SQL query based on the following natural language question. ONLY return the SQL query." return prompt # Streamed response emulator def response_generator(llm, messages, question, table_name, db_name): table_schema = get_table_schema(db_name, table_name) llm_prompt = generate_system_prompt(table_name, table_schema) user_prompt = f"""Question: {question}""" print(messages, llm_prompt, user_prompt) history = [{"content": llm_prompt.format(table_name=table_name), "role": "system"}] for val in messages: history.append(val) history.append({"role": "user", "content": user_prompt}) response = llm.create_chat_completion( messages=history, max_tokens=2048, temperature=0.7, top_p=0.95, ) answer = response["choices"][0]["message"]["content"] query = answer.replace("```sql", "").replace("```", "") query = query.strip() return query