|
import gradio as gr |
|
import numpy as np |
|
from transformers import WhisperProcessor, WhisperForConditionalGeneration |
|
import librosa |
|
|
|
processor = WhisperProcessor.from_pretrained("Neurai/NeuraSpeech_WhisperBase") |
|
model = WhisperForConditionalGeneration.from_pretrained("Neurai/NeuraSpeech_WhisperBase") |
|
forced_decoder_ids = processor.get_decoder_prompt_ids(language="fa", task="transcribe") |
|
|
|
|
|
def transcribe(audio): |
|
if audio is None: |
|
return "No audio input provided. Please record or upload an audio file." |
|
|
|
array, sample_rate = librosa.load(audio) |
|
array = array.astype(np.float32) |
|
sr = 16000 |
|
array = librosa.to_mono(array) |
|
array = librosa.resample(array, orig_sr=sample_rate, target_sr=sr) |
|
input_features = processor(array, sampling_rate=sr, return_tensors="pt").input_features |
|
|
|
predicted_ids = model.generate(input_features) |
|
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) |
|
return transcription[0] |
|
|
|
|
|
demo = gr.Interface( |
|
fn=transcribe, |
|
inputs=[gr.Audio(sources=["microphone"], type='filepath')], |
|
outputs="text", |
|
allow_flagging="never", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|