import gradio as gr from transformers import WhisperProcessor, WhisperForConditionalGeneration import librosa processor = WhisperProcessor.from_pretrained("Neurai/NeuraSpeech_WhisperBase") model = WhisperForConditionalGeneration.from_pretrained("Neurai/NeuraSpeech_WhisperBase") forced_decoder_ids = processor.get_decoder_prompt_ids(language="fa", task="transcribe") def transcribe(audio): if audio is None: return "No audio input provided. Please record or upload an audio file." # audio is now a file path, not a tuple try: array, sample_rate = librosa.load(audio, sr=16000) except Exception as e: return f"Error loading audio file: {str(e)}" # The rest of the function remains the same array = librosa.to_mono(array) input_features = processor(array, sampling_rate=sample_rate, return_tensors="pt").input_features # generate token ids predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) # decode token ids to text transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) print(transcription) return transcription[0] # Return the first (and only) transcription demo = gr.Interface( fn=transcribe, inputs=[gr.Audio(sources=["microphone"], type="filepath")], outputs="text" ) if __name__ == "__main__": demo.launch()