import gradio as gr from transformers import WhisperProcessor, WhisperForConditionalGeneration import librosa processor = WhisperProcessor.from_pretrained("Neurai/NeuraSpeech_WhisperBase") model = WhisperForConditionalGeneration.from_pretrained("Neurai/NeuraSpeech_WhisperBase") forced_decoder_ids = processor.get_decoder_prompt_ids(language="fa", task="transcribe") def transcribe(audio): if audio is None: return "No audio input provided. Please record or upload an audio file." sample_rate, array = audio sr = 16000 array = librosa.to_mono(array) array = librosa.resample(array, orig_sr=sample_rate, target_sr=16000) input_features = processor(array, sampling_rate=sr, return_tensors="pt").input_features # generate token ids predicted_ids = model.generate(input_features) # decode token ids to text transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) return transcription # input_audio = gr.Audio( # sources=["microphone"], # waveform_options=gr.WaveformOptions( # waveform_color="#01C6FF", # waveform_progress_color="#0066B4", # skip_length=2, # show_controls=True, # ), # ) # demo = gr.Interface( # fn=reverse_audio, # inputs=input_audio, # outputs="text" # ) demo = gr.Interface( fn=transcribe, inputs=[gr.Audio(sources=["microphone"], type="filepath")], outputs="text" ) if __name__ == "__main__": demo.launch()