import gradio as gr import numpy as np from transformers import WhisperProcessor, WhisperForConditionalGeneration import librosa processor = WhisperProcessor.from_pretrained("Neurai/NeuraSpeech_WhisperBase") model = WhisperForConditionalGeneration.from_pretrained("Neurai/NeuraSpeech_WhisperBase") forced_decoder_ids = processor.get_decoder_prompt_ids(language="fa", task="transcribe") def transcribe(audio): if audio is None: return "No audio input provided. Please record or upload an audio file." array, sample_rate = librosa.load(audio) array = array.astype(np.float32) sr = 16000 array = librosa.to_mono(array) array = librosa.resample(array, orig_sr=sample_rate, target_sr=sr) input_features = processor(array, sampling_rate=sr, return_tensors="pt").input_features predicted_ids = model.generate(input_features) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) return transcription[0] demo = gr.Interface( fn=transcribe, inputs=[gr.Audio(sources=["microphone"], type='filepath')], outputs="text", allow_flagging="never", ) if __name__ == "__main__": demo.launch()