stefan-it commited on
Commit
b4b321f
·
verified ·
1 Parent(s): 0fd9ad8

readme: add evaluation section with show-casing the best model checkpoints

Browse files
Files changed (1) hide show
  1. README.md +15 -0
README.md CHANGED
@@ -25,6 +25,21 @@ Following LMs were pretrained on the (10BT subset) of the famous [FineWeb](https
25
  * Token Dropping BERT-based - find the [best model checkpoint here](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-901k)
26
  * TEAMS-based - fine the [best model checkpoint here](https://huggingface.co/model-garden-lms/teams-base-finewebs-1m)
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  # ❤️ Acknowledgements
29
 
30
  This repository is the outcome of the last two years of working with TPUs from the awesome [TRC program](https://sites.research.google/trc/about/) and the [TensorFlow Model Garden](https://github.com/tensorflow/models) library.
 
25
  * Token Dropping BERT-based - find the [best model checkpoint here](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-901k)
26
  * TEAMS-based - fine the [best model checkpoint here](https://huggingface.co/model-garden-lms/teams-base-finewebs-1m)
27
 
28
+ # ScandEval Evaluation
29
+
30
+ To find the best checkpoints and compare our FineWeb-LMs to other models (BERT, ELECTRA and RoBERTa) we perform an evaluation using the great [ScandEval](https://github.com/ScandEval/ScandEval) library.
31
+
32
+ | Model ID | Avg. Score | CoNLL-En | SST5 | ScaLA-En | SQuAD |
33
+ |-------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
34
+ | [model-garden-lms/bert-base-finewebs-951k](https://huggingface.co/model-garden-lms/bert-base-finewebs-951k) | 69.41 | 89.25 ± 0.4 / 88.9 ± 0.37 | 58.17 ± 1.26 / 59.86 ± 1.65 | 58.83 ± 3.46 / 78.22 ± 2.11 | 55.66 ± 1.19 / 66.36 ± 1.42 |
35
+ | [model-garden-lms/bert-base-token-dropping-finewebs-901k](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-901k) | 68.01 | 88.98 ± 0.64 / 88.67 ± 0.55 | 57.79 ± 1.31 / 58.91 ± 1.85 | 54.25 ± 6.3 / 75.73 ± 3.54 | 54.4 ± 0.72 / 65.31 ± 1.01 |
36
+ | [model-garden-lms/teams-base-finewebs-1m](https://huggingface.co/model-garden-lms/teams-base-finewebs-1m) | **72.64** | 89.27 ± 0.41 / 88.82 ± 0.41 | 59.58 ± 0.64 / 62.63 ± 3.0 | 66.72 ± 0.94 / 83.01 ± 0.45 | 59.95 ± 0.71 / 71.13 ± 0.58 |
37
+ | [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) | 62.26 | 87.39 ± 0.79 / 87.11 ± 0.66 | 54.49 ± 1.36 / 53.22 ± 1.15 | 52.08 ± 2.13 / 74.52 ± 1.31 | 38.63 ± 2.1 / 50.68 ± 1.87 |
38
+ | [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) | 69.26 | 87.82 ± 0.69 / 86.83 ± 0.62 | 62.3 ± 1.12 / 55.93 ± 0.67 | 62.61 ± 1.21 / 80.85 ± 0.59 | 52.51 ± 0.86 / 65.2 ± 0.85 |
39
+ | [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) | 68.96 | 90.35 ± 0.23 / 90.14 ± 0.2 | 60.95 ± 1.4 / 57.52 ± 1.97 | 50.64 ± 1.69 / 74.55 ± 0.9 | 57.82 ± 1.35 / 69.68 ± 1.02 |
40
+
41
+ The TEAMS model outperforms RoBERTa and ELECTRA, which were trained on much more data and pretraining steps. All detailed results can be found in [this](https://huggingface.co/datasets/model-garden-lms/finewebs-scandeval-results) dataset repository.
42
+
43
  # ❤️ Acknowledgements
44
 
45
  This repository is the outcome of the last two years of working with TPUs from the awesome [TRC program](https://sites.research.google/trc/about/) and the [TensorFlow Model Garden](https://github.com/tensorflow/models) library.