AnyText / ocr_recog /RecMv1_enhance.py
tastelikefeet
first version
de7836d
import os, sys
import torch
import torch.nn as nn
import torch.nn.functional as F
from .common import Activation
class ConvBNLayer(nn.Module):
def __init__(self,
num_channels,
filter_size,
num_filters,
stride,
padding,
channels=None,
num_groups=1,
act='hard_swish'):
super(ConvBNLayer, self).__init__()
self.act = act
self._conv = nn.Conv2d(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
bias=False)
self._batch_norm = nn.BatchNorm2d(
num_filters,
)
if self.act is not None:
self._act = Activation(act_type=act, inplace=True)
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
if self.act is not None:
y = self._act(y)
return y
class DepthwiseSeparable(nn.Module):
def __init__(self,
num_channels,
num_filters1,
num_filters2,
num_groups,
stride,
scale,
dw_size=3,
padding=1,
use_se=False):
super(DepthwiseSeparable, self).__init__()
self.use_se = use_se
self._depthwise_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=int(num_filters1 * scale),
filter_size=dw_size,
stride=stride,
padding=padding,
num_groups=int(num_groups * scale))
if use_se:
self._se = SEModule(int(num_filters1 * scale))
self._pointwise_conv = ConvBNLayer(
num_channels=int(num_filters1 * scale),
filter_size=1,
num_filters=int(num_filters2 * scale),
stride=1,
padding=0)
def forward(self, inputs):
y = self._depthwise_conv(inputs)
if self.use_se:
y = self._se(y)
y = self._pointwise_conv(y)
return y
class MobileNetV1Enhance(nn.Module):
def __init__(self,
in_channels=3,
scale=0.5,
last_conv_stride=1,
last_pool_type='max',
**kwargs):
super().__init__()
self.scale = scale
self.block_list = []
self.conv1 = ConvBNLayer(
num_channels=in_channels,
filter_size=3,
channels=3,
num_filters=int(32 * scale),
stride=2,
padding=1)
conv2_1 = DepthwiseSeparable(
num_channels=int(32 * scale),
num_filters1=32,
num_filters2=64,
num_groups=32,
stride=1,
scale=scale)
self.block_list.append(conv2_1)
conv2_2 = DepthwiseSeparable(
num_channels=int(64 * scale),
num_filters1=64,
num_filters2=128,
num_groups=64,
stride=1,
scale=scale)
self.block_list.append(conv2_2)
conv3_1 = DepthwiseSeparable(
num_channels=int(128 * scale),
num_filters1=128,
num_filters2=128,
num_groups=128,
stride=1,
scale=scale)
self.block_list.append(conv3_1)
conv3_2 = DepthwiseSeparable(
num_channels=int(128 * scale),
num_filters1=128,
num_filters2=256,
num_groups=128,
stride=(2, 1),
scale=scale)
self.block_list.append(conv3_2)
conv4_1 = DepthwiseSeparable(
num_channels=int(256 * scale),
num_filters1=256,
num_filters2=256,
num_groups=256,
stride=1,
scale=scale)
self.block_list.append(conv4_1)
conv4_2 = DepthwiseSeparable(
num_channels=int(256 * scale),
num_filters1=256,
num_filters2=512,
num_groups=256,
stride=(2, 1),
scale=scale)
self.block_list.append(conv4_2)
for _ in range(5):
conv5 = DepthwiseSeparable(
num_channels=int(512 * scale),
num_filters1=512,
num_filters2=512,
num_groups=512,
stride=1,
dw_size=5,
padding=2,
scale=scale,
use_se=False)
self.block_list.append(conv5)
conv5_6 = DepthwiseSeparable(
num_channels=int(512 * scale),
num_filters1=512,
num_filters2=1024,
num_groups=512,
stride=(2, 1),
dw_size=5,
padding=2,
scale=scale,
use_se=True)
self.block_list.append(conv5_6)
conv6 = DepthwiseSeparable(
num_channels=int(1024 * scale),
num_filters1=1024,
num_filters2=1024,
num_groups=1024,
stride=last_conv_stride,
dw_size=5,
padding=2,
use_se=True,
scale=scale)
self.block_list.append(conv6)
self.block_list = nn.Sequential(*self.block_list)
if last_pool_type == 'avg':
self.pool = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else:
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.out_channels = int(1024 * scale)
def forward(self, inputs):
y = self.conv1(inputs)
y = self.block_list(y)
y = self.pool(y)
return y
def hardsigmoid(x):
return F.relu6(x + 3., inplace=True) / 6.
class SEModule(nn.Module):
def __init__(self, channel, reduction=4):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv1 = nn.Conv2d(
in_channels=channel,
out_channels=channel // reduction,
kernel_size=1,
stride=1,
padding=0,
bias=True)
self.conv2 = nn.Conv2d(
in_channels=channel // reduction,
out_channels=channel,
kernel_size=1,
stride=1,
padding=0,
bias=True)
def forward(self, inputs):
outputs = self.avg_pool(inputs)
outputs = self.conv1(outputs)
outputs = F.relu(outputs)
outputs = self.conv2(outputs)
outputs = hardsigmoid(outputs)
x = torch.mul(inputs, outputs)
return x