Spaces:
Running
on
A10G
Running
on
A10G
import random | |
import numpy as np | |
import cv2 | |
import os | |
import io | |
import oss2 | |
from PIL import Image | |
import dashscope | |
from dashscope import MultiModalConversation | |
from http import HTTPStatus | |
import re | |
import requests | |
from .log import logger | |
import concurrent.futures | |
dashscope.api_key = os.getenv("API_KEY_QW") | |
# oss | |
access_key_id = os.getenv("ACCESS_KEY_ID") | |
access_key_secret = os.getenv("ACCESS_KEY_SECRET") | |
bucket_name = os.getenv("BUCKET_NAME") | |
endpoint = os.getenv("ENDPOINT") | |
bucket = oss2.Bucket(oss2.Auth(access_key_id, access_key_secret), endpoint, bucket_name) | |
oss_path = "ashui" | |
oss_path_img_gallery = "ashui_img_gallery" | |
def download_img_pil(index, img_url): | |
# print(img_url) | |
r = requests.get(img_url, stream=True) | |
if r.status_code == 200: | |
img = Image.open(io.BytesIO(r.content)) | |
return (index, img) | |
else: | |
logger.error(f"Fail to download: {img_url}") | |
def download_images(img_urls, batch_size): | |
imgs_pil = [None] * batch_size | |
# worker_results = [] | |
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor: | |
to_do = [] | |
for i, url in enumerate(img_urls): | |
future = executor.submit(download_img_pil, i, url) | |
to_do.append(future) | |
for future in concurrent.futures.as_completed(to_do): | |
ret = future.result() | |
# worker_results.append(ret) | |
index, img_pil = ret | |
imgs_pil[index] = img_pil # 按顺序排列url,后续下载关联的图片或者svg需要使用 | |
return imgs_pil | |
def upload_np_2_oss(input_image, name="cache.png", gallery=False): | |
imgByteArr = io.BytesIO() | |
Image.fromarray(input_image).save(imgByteArr, format="PNG") | |
imgByteArr = imgByteArr.getvalue() | |
if gallery: | |
path = oss_path_img_gallery | |
else: | |
path = oss_path | |
bucket.put_object(path+"/"+name, imgByteArr) # data为数据,可以是图片 | |
ret = bucket.sign_url('GET', path+"/"+name, 60*60*24) # 返回值为链接,参数依次为,方法/oss上文件路径/过期时间(s) | |
del imgByteArr | |
return ret | |
def call_with_messages(prompt): | |
messages = [ | |
{'role': 'user', 'content': prompt}] | |
response = dashscope.Generation.call( | |
'qwen-14b-chat', | |
messages=messages, | |
result_format='message', # set the result is message format. | |
) | |
if response.status_code == HTTPStatus.OK: | |
return response['output']["choices"][0]["message"]['content'] | |
else: | |
print('Request id: %s, Status code: %s, error code: %s, error message: %s' % ( | |
response.request_id, response.status_code, | |
response.code, response.message | |
)) | |
return None | |
def HWC3(x): | |
assert x.dtype == np.uint8 | |
if x.ndim == 2: | |
x = x[:, :, None] | |
assert x.ndim == 3 | |
H, W, C = x.shape | |
assert C == 1 or C == 3 or C == 4 | |
if C == 3: | |
return x | |
if C == 1: | |
return np.concatenate([x, x, x], axis=2) | |
if C == 4: | |
color = x[:, :, 0:3].astype(np.float32) | |
alpha = x[:, :, 3:4].astype(np.float32) / 255.0 | |
y = color * alpha + 255.0 * (1.0 - alpha) | |
y = y.clip(0, 255).astype(np.uint8) | |
return y | |
def resize_image(input_image, resolution): | |
H, W, C = input_image.shape | |
H = float(H) | |
W = float(W) | |
k = float(resolution) / min(H, W) | |
H *= k | |
W *= k | |
H = int(np.round(H / 64.0)) * 64 | |
W = int(np.round(W / 64.0)) * 64 | |
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) | |
return img | |
def nms(x, t, s): | |
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) | |
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) | |
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) | |
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) | |
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) | |
y = np.zeros_like(x) | |
for f in [f1, f2, f3, f4]: | |
np.putmask(y, cv2.dilate(x, kernel=f) == x, x) | |
z = np.zeros_like(y, dtype=np.uint8) | |
z[y > t] = 255 | |
return z | |
def make_noise_disk(H, W, C, F): | |
noise = np.random.uniform(low=0, high=1, size=((H // F) + 2, (W // F) + 2, C)) | |
noise = cv2.resize(noise, (W + 2 * F, H + 2 * F), interpolation=cv2.INTER_CUBIC) | |
noise = noise[F: F + H, F: F + W] | |
noise -= np.min(noise) | |
noise /= np.max(noise) | |
if C == 1: | |
noise = noise[:, :, None] | |
return noise | |
def min_max_norm(x): | |
x -= np.min(x) | |
x /= np.maximum(np.max(x), 1e-5) | |
return x | |
def safe_step(x, step=2): | |
y = x.astype(np.float32) * float(step + 1) | |
y = y.astype(np.int32).astype(np.float32) / float(step) | |
return y | |
def img2mask(img, H, W, low=10, high=90): | |
assert img.ndim == 3 or img.ndim == 2 | |
assert img.dtype == np.uint8 | |
if img.ndim == 3: | |
y = img[:, :, random.randrange(0, img.shape[2])] | |
else: | |
y = img | |
y = cv2.resize(y, (W, H), interpolation=cv2.INTER_CUBIC) | |
if random.uniform(0, 1) < 0.5: | |
y = 255 - y | |
return y < np.percentile(y, random.randrange(low, high)) | |