littlebird13's picture
Update app.py
7a99d84 verified
raw
history blame
7.57 kB
import os
import json
from PIL import Image
from skimage import io
import gradio as gr
from modelscope_studio import encode_image, decode_image, call_demo_service
yes, no = "是", "否"
def get_size(h, w, max_size=720):
if min(h, w) > max_size:
if h > w:
h, w = int(max_size * h / w), max_size
else:
h, w = max_size, int(max_size * w / h)
return h, w
def inference(img: Image, colorization_option: str, image_denoise_option: str, color_enhance_option: str) -> Image:
if img is None:
return None
w, h = img.size
h, w = get_size(h, w, 512)
img = img.resize((w, h))
input_url = encode_image(img)
res_url = input_url
# image-denoising (optional)
if image_denoise_option == yes:
data = {
"task": "image-denoising",
"inputs": [
res_url
],
"parameters":{},
"urlPaths": {
"inUrls": [
{
"value": res_url,
"fileType": "png",
"type": "image",
"displayType": "ImgUploader",
"validator": {
"accept": "*.jpeg,*.jpg,*.png",
"max_resolution": "5000*5000",
"max_size": "10m"
},
"name": "",
"title": ""
}
],
"outUrls": [
{
"outputKey": "output_img",
"type": "image"
}
]
}
}
result = call_demo_service(
path='damo', name='cv_nafnet_image-denoise_sidd', data=json.dumps(data))
print(f"image-denoising result: {result}")
res_url = result['data']['output_img']
# image-colorization (optional)
if colorization_option == yes:
data = {
"task": "image-colorization",
"inputs": [
res_url
],
"parameters":{},
"urlPaths": {
"inUrls": [
{
"value": res_url,
"fileType": "png",
"type": "image",
"displayType": "ImgUploader",
"validator": {
"accept": "*.jpeg,*.jpg,*.png",
"max_size": "10m",
"max_resolution": "5000*5000",
},
"name": "",
"title": ""
}
],
"outUrls": [
{
"outputKey": "output_img",
"type": "image"
}
]
}
}
result = call_demo_service(
path='damo', name='cv_ddcolor_image-colorization', data=json.dumps(data))
print(f"image-colorization result: {result}")
res_url = result['data']['output_img']
# image-portrait-enhancement
data = {
"task": "image-portrait-enhancement",
"inputs": [
res_url
],
"parameters":{},
"urlPaths": {
"inUrls": [
{
"value": res_url,
"fileType": "png",
"type": "image",
"displayType": "ImgUploader",
"validator": {
"accept": "*.jpeg,*.jpg,*.png",
"max_size": "10M",
"max_resolution": "2000*2000",
},
"name": "",
"title": ""
}
],
"outUrls": [
{
"outputKey": "output_img",
"type": "image"
}
]
}
}
result = call_demo_service(
path='damo', name='cv_gpen_image-portrait-enhancement', data=json.dumps(data))
print(f"image-portrait-enhancement result: {result}")
res_url = result['data']['output_img']
# image-color-enhancement (optional)
if color_enhance_option == yes:
data = {
"task": "image-color-enhancement",
"inputs": [
res_url
],
"parameters":{},
"urlPaths": {
"inUrls": [
{
"value": res_url,
"fileType": "png",
"type": "image",
"displayType": "ImgUploader",
"validator": {
"accept": "*.jpeg,*.jpg,*.png",
"max_size": "10m",
"max_resolution": "5000*5000",
},
"name": "",
"title": ""
}
],
"outUrls": [
{
"outputKey": "output_img",
"type": "image"
}
]
}
}
result = call_demo_service(
path='damo', name='cv_csrnet_image-color-enhance-models', data=json.dumps(data))
print(f"image-color-enhancement result: {result}")
res_url = result['data']['output_img']
res_img = decode_image(res_url)
return res_img
title = "AI老照片修复"
description = '''
输入一张老照片,点击一键修复,就能获得由AI完成画质增强、智能上色等处理后的彩色照片!还等什么呢?快让相册里的老照片坐上时光机吧~
'''
examples = [[os.path.dirname(__file__) + './images/input1.jpg'],
[os.path.dirname(__file__) + './images/input2.jpg'],
[os.path.dirname(__file__) + './images/input3.jpg'],
[os.path.dirname(__file__) + './images/input4.jpg'],
[os.path.dirname(__file__) + './images/input5.jpg']]
css_style = "#overview {margin: auto;max-width: 600px; max-height: 400px; width: 100%;}"
with gr.Blocks(title=title, css=css_style) as demo:
gr.HTML('''
<div style="text-align: center; max-width: 720px; margin: 0 auto;">
<img id="overview" alt="overview" src="https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/public/ModelScope/studio_old_photo_restoration/overview_long.gif" />
</div>
''')
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=2):
img_input = gr.components.Image(label="图片", type="pil")
colorization_option = gr.components.Radio(label="重新上色", choices=[yes, no], value=yes)
image_denoise_option = gr.components.Radio(label="应用图像去噪(存在细节损失风险)", choices=[yes, no], value=no)
color_enhance_option = gr.components.Radio(label="应用色彩增强(存在罕见色调风险)", choices=[yes, no], value=no)
btn = gr.Button("一键修复")
with gr.Column(scale=3):
img_output = gr.components.Image(label="图片", type="pil").style(height=600)
inputs = [img_input, colorization_option, image_denoise_option, color_enhance_option]
btn.click(fn=inference, inputs=inputs, outputs=img_output)
gr.Examples(examples, inputs=img_input)
demo.launch()