Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
littlebird13
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,216 +1,29 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
from PIL import Image
|
4 |
-
from skimage import io
|
5 |
import gradio as gr
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
"inputs": [
|
35 |
-
res_url
|
36 |
-
],
|
37 |
-
"parameters":{},
|
38 |
-
"urlPaths": {
|
39 |
-
"inUrls": [
|
40 |
-
{
|
41 |
-
"value": res_url,
|
42 |
-
"fileType": "png",
|
43 |
-
"type": "image",
|
44 |
-
"displayType": "ImgUploader",
|
45 |
-
"validator": {
|
46 |
-
"accept": "*.jpeg,*.jpg,*.png",
|
47 |
-
"max_resolution": "5000*5000",
|
48 |
-
"max_size": "10m"
|
49 |
-
},
|
50 |
-
"name": "",
|
51 |
-
"title": ""
|
52 |
-
}
|
53 |
-
],
|
54 |
-
"outUrls": [
|
55 |
-
{
|
56 |
-
"outputKey": "output_img",
|
57 |
-
"type": "image"
|
58 |
-
}
|
59 |
-
]
|
60 |
-
}
|
61 |
-
}
|
62 |
-
result = call_demo_service(
|
63 |
-
path='damo', name='cv_nafnet_image-denoise_sidd', data=json.dumps(data))
|
64 |
-
print(f"image-denoising result: {result}")
|
65 |
-
res_url = result['data']['output_img']
|
66 |
-
|
67 |
-
# image-colorization (optional)
|
68 |
-
if colorization_option == yes:
|
69 |
-
data = {
|
70 |
-
"task": "image-colorization",
|
71 |
-
"inputs": [
|
72 |
-
res_url
|
73 |
-
],
|
74 |
-
"parameters":{},
|
75 |
-
"urlPaths": {
|
76 |
-
"inUrls": [
|
77 |
-
{
|
78 |
-
"value": res_url,
|
79 |
-
"fileType": "png",
|
80 |
-
"type": "image",
|
81 |
-
"displayType": "ImgUploader",
|
82 |
-
"validator": {
|
83 |
-
"accept": "*.jpeg,*.jpg,*.png",
|
84 |
-
"max_size": "10m",
|
85 |
-
"max_resolution": "5000*5000",
|
86 |
-
},
|
87 |
-
"name": "",
|
88 |
-
"title": ""
|
89 |
-
}
|
90 |
-
],
|
91 |
-
"outUrls": [
|
92 |
-
{
|
93 |
-
"outputKey": "output_img",
|
94 |
-
"type": "image"
|
95 |
-
}
|
96 |
-
]
|
97 |
-
}
|
98 |
-
}
|
99 |
-
result = call_demo_service(
|
100 |
-
path='damo', name='cv_ddcolor_image-colorization', data=json.dumps(data))
|
101 |
-
print(f"image-colorization result: {result}")
|
102 |
-
res_url = result['data']['output_img']
|
103 |
-
|
104 |
-
|
105 |
-
# image-portrait-enhancement
|
106 |
-
data = {
|
107 |
-
"task": "image-portrait-enhancement",
|
108 |
-
"inputs": [
|
109 |
-
res_url
|
110 |
-
],
|
111 |
-
"parameters":{},
|
112 |
-
"urlPaths": {
|
113 |
-
"inUrls": [
|
114 |
-
{
|
115 |
-
"value": res_url,
|
116 |
-
"fileType": "png",
|
117 |
-
"type": "image",
|
118 |
-
"displayType": "ImgUploader",
|
119 |
-
"validator": {
|
120 |
-
"accept": "*.jpeg,*.jpg,*.png",
|
121 |
-
"max_size": "10M",
|
122 |
-
"max_resolution": "2000*2000",
|
123 |
-
},
|
124 |
-
"name": "",
|
125 |
-
"title": ""
|
126 |
-
}
|
127 |
-
],
|
128 |
-
"outUrls": [
|
129 |
-
{
|
130 |
-
"outputKey": "output_img",
|
131 |
-
"type": "image"
|
132 |
-
}
|
133 |
-
]
|
134 |
-
}
|
135 |
-
}
|
136 |
-
result = call_demo_service(
|
137 |
-
path='damo', name='cv_gpen_image-portrait-enhancement', data=json.dumps(data))
|
138 |
-
print(f"image-portrait-enhancement result: {result}")
|
139 |
-
res_url = result['data']['output_img']
|
140 |
-
|
141 |
-
# image-color-enhancement (optional)
|
142 |
-
if color_enhance_option == yes:
|
143 |
-
data = {
|
144 |
-
"task": "image-color-enhancement",
|
145 |
-
"inputs": [
|
146 |
-
res_url
|
147 |
-
],
|
148 |
-
"parameters":{},
|
149 |
-
"urlPaths": {
|
150 |
-
"inUrls": [
|
151 |
-
{
|
152 |
-
"value": res_url,
|
153 |
-
"fileType": "png",
|
154 |
-
"type": "image",
|
155 |
-
"displayType": "ImgUploader",
|
156 |
-
"validator": {
|
157 |
-
"accept": "*.jpeg,*.jpg,*.png",
|
158 |
-
"max_size": "10m",
|
159 |
-
"max_resolution": "5000*5000",
|
160 |
-
},
|
161 |
-
"name": "",
|
162 |
-
"title": ""
|
163 |
-
}
|
164 |
-
],
|
165 |
-
"outUrls": [
|
166 |
-
{
|
167 |
-
"outputKey": "output_img",
|
168 |
-
"type": "image"
|
169 |
-
}
|
170 |
-
]
|
171 |
-
}
|
172 |
-
}
|
173 |
-
result = call_demo_service(
|
174 |
-
path='damo', name='cv_csrnet_image-color-enhance-models', data=json.dumps(data))
|
175 |
-
print(f"image-color-enhancement result: {result}")
|
176 |
-
res_url = result['data']['output_img']
|
177 |
-
|
178 |
-
|
179 |
-
res_img = decode_image(res_url)
|
180 |
-
|
181 |
-
return res_img
|
182 |
-
|
183 |
-
|
184 |
-
title = "AI老照片修复"
|
185 |
-
description = '''
|
186 |
-
输入一张老照片,点击一键修复,就能获得由AI完成画质增强、智能上色等处理后的彩色照片!还等什么呢?快让相册里的老照片坐上时光机吧~
|
187 |
-
'''
|
188 |
-
examples = [[os.path.dirname(__file__) + './images/input1.jpg'],
|
189 |
-
[os.path.dirname(__file__) + './images/input2.jpg'],
|
190 |
-
[os.path.dirname(__file__) + './images/input3.jpg'],
|
191 |
-
[os.path.dirname(__file__) + './images/input4.jpg'],
|
192 |
-
[os.path.dirname(__file__) + './images/input5.jpg']]
|
193 |
-
|
194 |
-
css_style = "#overview {margin: auto;max-width: 600px; max-height: 400px; width: 100%;}"
|
195 |
-
|
196 |
-
with gr.Blocks(title=title, css=css_style) as demo:
|
197 |
-
gr.HTML('''
|
198 |
-
<div style="text-align: center; max-width: 720px; margin: 0 auto;">
|
199 |
-
<img id="overview" alt="overview" src="https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/public/ModelScope/studio_old_photo_restoration/overview_long.gif" />
|
200 |
-
</div>
|
201 |
-
''')
|
202 |
-
gr.Markdown(description)
|
203 |
-
with gr.Row():
|
204 |
-
with gr.Column(scale=2):
|
205 |
-
img_input = gr.components.Image(label="图片", type="pil")
|
206 |
-
colorization_option = gr.components.Radio(label="重新上色", choices=[yes, no], value=yes)
|
207 |
-
image_denoise_option = gr.components.Radio(label="应用图像去噪(存在细节损失风险)", choices=[yes, no], value=no)
|
208 |
-
color_enhance_option = gr.components.Radio(label="应用色彩增强(存在罕见色调风险)", choices=[yes, no], value=no)
|
209 |
-
btn = gr.Button("一键修复")
|
210 |
-
with gr.Column(scale=3):
|
211 |
-
img_output = gr.components.Image(label="图片", type="pil").style(height=600)
|
212 |
-
inputs = [img_input, colorization_option, image_denoise_option, color_enhance_option]
|
213 |
-
btn.click(fn=inference, inputs=inputs, outputs=img_output)
|
214 |
-
gr.Examples(examples, inputs=img_input)
|
215 |
-
|
216 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
from modelscope.outputs import OutputKeys
|
5 |
+
from modelscope.pipelines import pipeline
|
6 |
+
from modelscope.utils.constant import Tasks
|
7 |
+
import PIL
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
img_colorization = pipeline(Tasks.image_colorization, model='iic/cv_ddcolor_image-colorization')
|
11 |
+
img_path = 'input.png'
|
12 |
+
##result = img_colorization(img_path)
|
13 |
+
##cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG])
|
14 |
+
def color(image):
|
15 |
+
output = img_colorization(image[...,::-1])
|
16 |
+
result = output[OutputKeys.OUTPUT_IMG].astype(np.uint8)
|
17 |
+
result = result[...,::-1]
|
18 |
+
print('infer finished!')
|
19 |
+
return result
|
20 |
+
|
21 |
+
|
22 |
+
title = "老照片修复"
|
23 |
+
description = "上传图片,达到老照片修复"
|
24 |
+
examples = [['./input.png'],]
|
25 |
+
|
26 |
+
demo = gr.Interface(fn=color,inputs="image",outputs="image",examples=examples,title=title,description=description)
|
27 |
+
|
28 |
+
if __name__ == "__main__":
|
29 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|